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1   Introduction

The crossover MCUs of NXP are ideal edge computing platforms and provide superior computing power.
To further show the capability of the i.MX RT family MCUs for machine learning technology, this document
introduces an example of multiple-person detection using the high-efficient neural network on the i.MX RT1060
and i.MX RT1170.

1. A lightweight person detection model is provided with an effective network architecture ShuffleNet-V2 [1],
which is much faster and memory access cost friendly than most of the previous networks available on Arm
platforms.

2. The given model is converted into object files through eIQ Glow tool to get increased performance and a
smaller memory footprint for the Arm Cortex-M7 core on the i.MX RT1060 and i.MX RT1170. Experimental
analysis is further given to demonstrate the quantization accuracy, memory usage as well as the latency on
the target platform under different quantization options.

3. A microcontroller-based vision intelligence algorithm (uVITA) application pipeline is proposed to enable
the multiple person detection solution with different microcontroller platforms. Therefore, the camera can
capture the frame in real time. Meanwhile, the display shows the frame simultaneously, be the speed of the
vision algorithm fast or slow on different platforms.

The contributions of this application software pack are summarized as below:

• It provides a lightweight person detection model with a highly efficient and memory access cost friendly neural
network.

• The detailed steps and experimental analysis are given to demonstrate how to convert an object detection
model with eIQ Glow into object files on a microcontroller.

• A microcontroller-based vision intelligence algorithm application pipeline is proposed to build the multiple
person detection projects on the i.MX RT1060evk and i.MX RT1170evk.

Glossary Description

ML Machine Learning

CNN Convolutional Neutral Network

MAC Memory Access Cost

RAM Random Access Memory

NMS Non-Maximum Suppression

Table 1. Glossary

2   Multiple person detection neural network

Multiple-person detection plays an important role in various applications, such as, robots and security. Study
shows that the deep Convolutional Neutral Networks (CNNs) usually have higher accuracy in these object
detection tasks. Therefore, lots of CNN-based methods, including Yolo [2], ResNet [3], SSD [4], and so on, are
proposed to improve the performance of object detection. Apart from the detection accuracy, computation
complexity is another important factor especially for the applications on edge devices. Therefore, many
lightweight CNNs like Xception, MobileNet [5], and ShuffleNet [6] are given to achieve better speed-accuracy
trade-off. Among these, ShuffleNet-V2 presents a better characteristic of light weight and high accuracy [1].
Moreover, it performs lower Memory Access Cost (MAC) with validations on the Arm platform. As a result, the
ShuffleNet-V2 architecture is applied to train the multiple person detection in our application.
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2.1  Neural network with ShuffleNet-V2
To derive a lightweight ML model of a person detector, we trained a high-efficient neural network, in which the
ShuffleNet-V2 architecture is applied to achieve a speed-accuracy tradeoff. ShuffleNet is a state-of-the-art
network architecture, widely adopted in low-end devices such as mobiles [1].

Figure 1 illustrates the building blocks in the trained model with ShuffleNet-V2. Among these, Block-1 and
Block-2 contribute to the main structure of the neural network. Block-1 and Block-2 are used to maintain
many channels with neither dense convolution nor too many groups [1]. In this way, it helps reduce the MAC.
Specifically, the Block-1 helps to narrow down the feature map size and only keep the useful information.
Meanwhile, A channel shuffle operation is then introduced to enable information communication between
different groups of channels and improve accuracy [1]. Block-2 introduces a simple operator called channel split
to split the features into two branches. One branch remains as an identity while the other branch tries to explore
more information.

(a) Block -1 (b) Block -2 

Figure 1. Main structure of the person detector model with ShuffleNet-V2

The extracted features are then sent into an Inception structure with 5  5 parallel convolutions, as shown
in Block-3 in Figure 2. It is expected to integrate the features of different perception fields, so that a single
detection head adapts to the object detection with different scales. Finally, an anchor-free detection head with
three branches is used as shown in Block-4 in Figure 2, in which the first branch with a sigmoid activation
layer is responsible for the detection confidence. The output of the second branch provides coordination of the
detected objects. Meanwhile, the last branch with a softmax activation layer is in charge of detection categories.
In this application, there is only one object, the human body, so the last branch actually does not work.
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(a) Block - 3 (b) Block - 4

Figure 2. Building blocks of the person detector model with ShuffleNet-V2

The building blocks are repeatedly stacked to construct the whole multiple person detector. Table 2 summarizes
the overall network structure. Note that the height and width of the input in the proposed person detector are
set to 192 and 320 respectively, maintaining the height to width ratio of around 9:16. This is because both the
height to width ratio of the cameras on RT1170EVK or RT1060EVK are around 9:16. Therefore, there would be
no distortion in the matching between the camera and input of the person detector.

Index Layer Output size Kernel size Stride Repeat Output channels

0 Image 192  320 — — — 3

Conv1 96  160 3  3 2 1 24
1

MaxPool 48  80 3  3 2

Block-1 24  40 3  3 and 1  1 2 1 48
2

Block-2 24  40 3  3 and 1  1 1 3 48

Block-1 12  20 3  3 and 1  1 2 1 96
3

Block-2 12  20 3  3 and 1  1 1 7 96

Block-1 6  10 3  3 and 1  1 2 1 192
4

Block-1 6  10 3  3 and 1  1 2 1 192

Concat 12  20 — — — 336
5

Conv2 12  20 1  1 1 1 96

6 Block-3 12  20 5  5 and 1  1 1 1 96

7 Block-4 12  20 5  5 and 1  1 1 1 6

Table 2. Overall architecture of person detector model with layer information

The output size of the feature map is 12  20 in the given person detector network, maintaining a down-
sampling ratio of 16 for the input resolution (192  320) of the network. Besides, there are six channels in
the final output of the given network. Among these, the first channel and last channel respectively provide
the confidence and category of the object. The confidence and category information are located in the
corresponding grid as shown in Figure 3. The other four channels respectively correspond to the X-coordinate
and Y-coordinate of the center location, as well as the width and height of the objects. Then, the candidate
boxes corresponding to the interested objects are extracted, as shown in Figure 3, through the information of
the six output channels. Finally, the detection results are derived by filtering the candidate boxes with a Non-
Maximum Suppression (NMS) strategy.
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Figure 3. ML person detector algorithm pipeline with ShuffleNet-V2

2.2  Pre-process and post-process of the neural network
The given neural network was trained with COCO and PASCAL-VOC, which are two popular data sets for
multiple-object detection. There are many kinds of objects in those data sets. However, the only thing we need
is the category of person to train a person detector in this application. Therefore, a pre-process was given to
prepare the labels related to the person, while all the other objects are treated as backgrounds.

To evaluate the performance of the trained model, a static image test and a dynamic video test are provided
in the Scripts folder. There are three key points that users should pay attention to before testing a model or
deploying the model onto a real edge device. The first one is the pre-process of the image data before sending
it to a model. In the proposed person detector, the pre-process of the image is:

(1)

In other words, the image must be normalized between 0 and 1 before sending it to the given model. Another
key point is the post-process for the output of the model. Since the given person detector extracts the candidate
boxes of the object in an anchor-free way, the post-process is slightly easier than the traditional Yolo method [2].
The final mixed confidence in each output grid as shown in Figure 3 is computed as:

(2)

In Equation 2,  denotes the value of the -th row and the -th column of the first channel in

Figure 3.  is the value of the -th row and the -th column of the last channel in Figure 3. 

denotes the weight of the  channel. With a given threshold to the final mixed confidence 
in each grid, the candidate boxes of the interested object can be filtered. Then, the corresponded center
coordinates are calculated as below:

(3)

(4)

Meanwhile, the height and width of the interested object activated at ( ) are given as:
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(5)

(6)

2.3  Algorithm performance
With the given person detection model and pre/post-process, the algorithm results can be derived with some
static image examples as shown in Figure 4. It illustrates the person detection results with the final confidence
and coordinates of the person in each frame. These results show robust and reliable predictions for person
detection in different environments. Besides, there is a video test script in this application to let users verify the
performance of the given person detector with firsthand experience.

Figure 4. Algorithm performance of the given person detector

3   eIQ inference with Glow NN

To deploy a neural network into the i.MX RT crossover MCUs, the NXP eIQ ML software development
environment provides friendly and efficient tools, such as Glow, TensorFlow Lite Micro, or DeepViewRT. In this
application, it enables the ahead-of-time compilation with Glow to convert the original neural network into object
files and further deploy the model on the MCUs.

3.1  Quantization and compilation with Glow NN
Glow enables the inference of the neural network model on the edge devices. To compile the given model with
Glow, usually two phases convert the model into object files. In the first phase, the Glow optimizer performs
quantization analysis with given calibration data and the model. To help users reproduce the quantized object
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files, this application provides the float model in onnx format and the calibration data with 132 images at
resolution 192  320. These images are generated from a WIDER FACE dataset. Users can generate the yml
file first with the command below:

image-classifier.exe -input-image-dir=Data/Calibration -image-mode=0to1 -image-
layout=NCHW -image-channel-order=BGR -model=Model/Onnx/dperson_shufflenetv2.onnx
 -model-input-name=input.1 -dump-profile=Model/Glow/dperson_shufflenetv2.yml

For more helpful information about the Glow operation, see the eIQ Glow Ahead of Time User Guide
EIQGLOWAOTUG). Once the yml file is derived, the second phase can be applied to perform optimizations that
take advantage of specialized back-end hardware features. In this application, the target platform is the Arm
Cortex-M7 core. Therefore, the binary object file (bundle) can be generated by compiling a float32 model into an
int8 bundle for getting Cortex-M7 support with less memory consumption and faster inference speed. To do this,
the below command helps generate the 8-bit bundle.

model-compiler.exe -model=Model/Onnx/dperson_shufflenetv2.onnx -model-
input=input.1,float,[1,3,192,320] -emit-bundle=Model/Glow/int8_bundle -
backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard -load-profile=Model/
Glow/dperson_shufflenetv2.yml -quantization-schema=symmetric_with_power2_scale -
quantization-precision-bias=Int8

Another bundle compiling option is to accelerate performance by utilizing Arm CMSIS-NN library, with the
command below.

model-compiler.exe -model=Model/Onnx/dperson_shufflenetv2.onnx -model-
input=input.1,float,[1,3,192,320] -emit-bundle=Model/Glow/int8_cmsis_bundle -
backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard -load-profile=Model/
Glow/dperson_shufflenetv2.yml -quantization-schema=symmetric_with_power2_scale -
quantization-precision-bias=Int8 -use-cmsis

Then, the glow bundle is derived from the output of the Glow compiler. Four files are generated into the
directory specified by the -emit-bundle. In this application, the four files are respectively given as:

• dperson_shufflenetv2.h - the bundle header file (API).
• dperson_shufflenetv2.o - the bundle object file (code).
• dperson_shufflenetv2.weights.bin - the model weights in binary format.
• dperson_shufflenetv2.weights - the model weights in text format as C text array.

The dperson_shufflenetv2.h file contains the memory usage and the inference function API. The
dperson_shufflenetv2.o file is the object file that contains the compiled model code in the form of a library.
Generally, the size of the object file is larger than the flash size required by itself.

3.2  Memory footprint and latency analysis
In this application, the given person detector shows lightweight characteristics in the required memory and the
latency of the model, as shown in Table 3. As is known, Glow does not allocate memory dynamically. Therefore,
the required memory size of the quantized model generated by Glow is provided in the bundle header file. This
information is further summarized in Table 3.

It can be found that the constant weights of the given person detector occupy 235,904 bytes and 246,848 bytes
generated by Glow without and with CMSIS-NN respectively. During inferencing, the weights can be read from
either Flash or from RAM, while the weights take up the specified amount of Flash. Another Flash usage is
caused by the generated object code in the format of a library, which requires 76,192 bytes and 25,840 bytes
respectively without and with CMSIS-NN.
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The amount of memory required for both the input and output data buffers is 743,040 bytes, which must be
allocated from RAM. The input/output buffer is related to the input resolution and output feature map size of the
given model. For example, the given model of the person detector has an input resolution of 192  320  3
and an output shape of 12  20  6. The total buffer size is:

(7)

An activation buffer, viewed as the scratch memory required for intermediate computations, must be allocated
from RAM. For the given model, the activation buffer size is 552,960 bytes and 645,120 bytes respectively
without and with CMSIS-NN.

Glow compile
options

Weights
(Flash)

Input/Output
(SDRAM)

Activations
(SDRAM)

Library
(Flash)

Latency

778 ms (RT1060)8-bit
No CMSIS-NN

235,904 743,040 552,960 76,912

495 ms (RT1170)

353 ms (RT1060)8-bit
With CMSIS-NN

246,848 743,040 645,120 25,840

237 ms (RT1170)

Table 3. Memory Footprint and Latency of Person Detector Model

The activations buffer allocated in different RAM regions could have different performance implications in terms
of latency. For instance, allocating the activations buffer in On-Chip (OC) RAM reduces the latency from 230
ms to 161 ms on RT1170 as shown in Figure 5. It is understandable that the model inference computation in
OCRAM has higher efficiency than that in SDRAM. More importantly, allocating the activations buffer in OCRAM
can help avoid the memory access conflict between CPU and other resources like DMA and PXP. This point will
be discussed in the next section.
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Figure 5. Model inference latency with activations buffer allocated in different RAM regions

3.3  Quantization precision verification
Before deploying a quantized model on the edge devices, the quantization precision should be verified first.
Figure 6 shows the prediction results respectively given by the original float model and two different versions
quantized with Glow. It can be found that the quantization results by Glow with or without CMSIS-NN are
relatively consistent with that given by the float model, especially for the samples with simple backgrounds and
non-overlapped persons. Since the model in the format of 8-bit has a certain loss of information, there is no
wonder about the existence of the mismatch cases as represented by the red and green outlines in Figure 6 (c).
Nevertheless, the overall performance of the quantized model is more reliable compared with the original float
model, as shown in Figure 6 (a), (b), and (d).

AN13924 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 8 May 2023
8 / 17



NXP Semiconductors AN13924
Multiple Person Detection with High-Efficient Neural Network on i.MX RT1060 and RT1170

(a) (b)

(c) (d)

Figure 6. Quantization performance of the person detection model

4   Person detector in application

In this section, additional guidance and explanations are provided for introducing the ML person detector
integrating on real edge devices. This application software pack has another Getting Started document to help
users easily reproduce the example application.

4.1  System design
The cross-over MCUs of NXP provide high-performance intelligent capabilities with abundant hardware
resources. For instance, the processor of RT1060EVK and RT1170EVK have the Arm Cortex-M7 core
respectively up to 600 MHz and 1 GHz, as shown in Table 4. In addition, the given platforms provide abundant
memory for vision applications. Furthermore, the generic 2D hardware acceleration (PXP) is embedded in the
RT1060 and RT1170 to help achieve common image-processing functions fast and save CPU bandwidth. The
supported 2D process includes image rotation, image scaling, color space conversion, and so on. As shown
in Table 4, the camera used on RT1060EVK and RT1170EVK is MT9M114 and OV5640 respectively. In this
application, the resolution of the camera on RT1060EVK is set as 480*272, keeping the same resolution as its
display. Similar, both the resolution of the camera and display on RT1170EVK are set as 1280*720.

RT1060EVK RT1170EVK

Processor MIMXRT1062DVL6A
600 MHz Arm Cortex-M7 core

MIMXRT1176DVMAA
1 GHz Arm Cortex-M7 core

Table 4. Hardware resources for ML vision applications on NXP cross-over MCUs
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RT1060EVK RT1170EVK
400 MHz Arm Cortex-M4 core

Memory • 1 MB on-chip RAM
• 256 MB SDRAM memory
• 512 MB Hyper Flash
• 64 MB QSPI Flash

• 2 MB on-chip RAM
• 512 Mbit SDRAM memory
• 512 Mbit Octal Flash
• 128 Mbit QSPI Flash

Camera MT9M114 or OV7725 OV5640

Display TFT: RK043FN02H-CT
Resolution: 480*272

TFT: RK055HDMIPI4M
Resolution: 1280*720

Generic 2D (PXP) • Image rotation (90°, 180°, 270°)
• Image scaling
• Color space conversion
• ...

• Image rotation (90°, 180°, 270°)
• Image scaling
• Color space conversion
• ...

Table 4. Hardware resources for ML vision applications on NXP cross-over MCUs...continued

To make the ML-based person detector easy to deploy on different development boards, we propose a cross-
platform microcontroller-based Vision Intelligence Algorithms (uVITA) system to manage tasks of the camera,
display as well as the algorithm. Besides, the uVITA system tries to get a better user experience in terms of
ML vision applications. For example, the camera should capture the frame in real time. Meanwhile, the display
should show it simultaneously, regardless if the speed of the algorithm is fast (on RT1170) or slow (on RT1060).
The proposed system architecture is shown in Figure 7, in which the camera task is responsible for capturing
the image frame and sending it to the algorithm task and display task with the corresponding required image
format and size. Meanwhile, the algorithm task is to infer the ML model with fed data. Then, it extracts the
results from the model and filters the predictions with proposed post-processing functions. Finally, the display
task is responsible for showing the image frame and algorithm results on the display. Since the three tasks
shown in Figure 7 run in parallel under the management of FreeRTOS, the camera and display handle their
process in real time if their priority is higher than the algorithm task.
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(a)

(b)

Figure 7. Microcontroller-based Vision Intelligence Algorithms (uVITA) system

The conversion of the image scale and image format is realized by the PXP accelerated functions supported
on the cross-over MCUs of NXP. According to the requirements of the input of the person detector, the image
frame received from the camera is directly converted to the RGB888 format at a resolution of 320*192 by the
PXP function. Besides, the image frame captured by the camera is converted to the frame shown in the display
at 15PFS in the format of RGB565 by the PXP function. Therefore, the CPU resources are saved as much
as possible so that it can infer the neural network of the person detector with more bandwidth. It needs a 90°
rotation before showing the frame on the display of RT1170EVK since the display panel is in vertical mode.

4.2  Overall performance
In this application, the memory requirement impact of the person detector in the MCUXpresso IDE project is
discussed first. As shown in Table 5 with the application project on RT1060, all buffers have been set to zero
to start with. Then, the camera, display, and FreeRTOS support are added based on the SDK project. The goal
is to focus on the memory requirement impact of the application project. Users can determine if a particular
ML model could fit on a particular board. In addition to the required memory listed in Table 5, an extra 1020 K-
bytes memory is required for bearing the data of capturing the frame by a camera and showing it on the display.
Specifically, the camera resolution is set as 272*480 in the format of RGB565, so its data buffer occupies
2*272*480*2 bytes. Besides, the display resolution and format are set as 272*480 and RGB565 respectively, so
its data buffer occupies 2*272*480*2 bytes. Therefore, all the above buffers are given in the SDRAM with a total
of 1020 kB.
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Description Flash
(bytes)

RAM
(bytes)

Change (bytes) Details

Bare-Bones 109,144 26,372 Baseline Baseline SDK project with camera, display, and
FreeRTOS Support.

Adding memory for
static input image in
the algorithm task

109,144 211,292 +184,320 RAM The frame buffer of algorithm task is in format
of RGB888 with resolution 192*400, so it
occupies 192*320*3 = 184320 bytes.

Adding in .o library 134,984 211,292 +25,840 Flash The Glow compiled person detection library .o
file.
Note:  This is less than the size on the .o file
on the PC hard drive.

Adding input/ output
and activations buffers

134,984 1,599,604 +1,388,312 RAM Statically allocate memory for mutable weights
(model input/output data, 743,040 bytes)
and activations (model intermediate results,
645,120 bytes).

Adding weights in Flash 381,832 1,599,604 +246,848 Flash If weights are read from Flash, this does not
affect RAM usage but requires 246,848 bytes
of nonvolatile memory.

Adding weights in RAM 381,832 1,846,452 +246,848 RAM If weights are read from RAM, the project
requires 246,848 additional bytes of RAM. This
is optional but may decrease inference time.

Table 5. MCUXpresso SDK compiled project size for ML person detector on RT1060EVK

The similar memory requirement impact of the person detector can be found on the RT1170EVK, where the
main difference exists in the size of the extra buffer for bearing the data of the camera frame and display frame
whose resolution is higher than that on RT1060EVK. For the RT1170EVK, both the resolution of the camera
and display is 1280*720 in the format of YUYV so that its data buffer occupies 2*720*1280*4 bytes. Meanwhile,
the display resolution and format are set as 720*1280 and RGB565 respectively, so its data buffer occupies
2*720*1280*2 bytes. Besides, there is an extra buffer for saving a single frame to show the algorithm results
before sending it to display, and it needs 720*1280*2 bytes. Therefore, all the above buffering is handled in the
SDRAM with a total of 12600 kB.

Another aspect to be addressed is the latency impact of the person detector in real edge applications. The
CPU resources and memory access bandwidth are occupied by the multi-task system, so they may not fully
serve the model inference task. For instance, when the activation buffer of the compiled model by Glow with
CMSIS-NN optimization is allocated in the SDRAM, the ideal latency of the compiled model is 230 ms on
the RT1170EVK. However, when the camera task and display task are running at the same time, the latency
of compiled model in the algorithm task increases to 280 ms. The key reason exists at the memory access
bandwidth limitation between CPU and other hardware accelerators like PXP and DMA. Therefore, a more
ideal memory configuration is to make the activation buffer of the compiled model allocated in the OCRAM,
meanwhile, put the data buffer of the camera and display in the SDRAM. In this way, the memory access
conflict can be avoided. As shown in Table 5, the latency impact can be reduced when the activation buffer is
allocated in OCRAM.

Model Weights
(246,848)

Activations
(645,120)

Latency (ideal) Latency (real application)

Flash SDRAM 230 ms 281 msShufflenetv2
EIQ-Glow

8-bit
with CMSIS-NN

Flash OCRAM 161 ms 165 ms

Table 6. Latency impact of the person detector on RT1170EVK
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5   Conclusion

In this application, the multiple person detector is proposed on the cross-over MCUs of NXP, i.MX RT1060 and
RT1170. The given person detector is first achieved with a high-efficient neural network based on ShuffleNet-
V2 architecture with a speed-accuracy tradeoff. The quantization and compilation procedures by eIQ Glow
are then introduced for the trained person detector so that the corresponding executable codes on the
MCUs can be obtained. Meanwhile, the memory usage, latency, and quantization precision of the converted
model are analyzed. Finally, the proposed uVITA system is demonstrated for building a person detector on
the RT1060EVK and RT1170EVK respectively. Therefore, the camera can capture the frame in real time.
Meanwhile, the display shows it simultaneously, regardless whether the speed of the algorithm is fast or slow.
This application serves as a prototype from which users can build their own ML vision programs with the cross-
over MCUs of NXP. With their own developed ML models in hand, customers can build intelligent products
similar to this application based on the eIQ ML software development environment.
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7   Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
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ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

8   Revision history

Table 7 summarizes the revisions to this document.

Revision number Date Substantive changes

0 08 May 2023 Initial release

Table 7. Revision history
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9   Legal information

9.1  Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

9.2  Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

9.3  Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
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AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

eIQ — is a trademark of NXP B.V.
i.MX — is a trademark of NXP B.V.

AN13924 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 8 May 2023
16 / 17



NXP Semiconductors AN13924
Multiple Person Detection with High-Efficient Neural Network on i.MX RT1060 and RT1170

Contents
1 Introduction ......................................................... 2
2 Multiple person detection neural network ........ 2
2.1 Neural network with ShuffleNet-V2 ....................3
2.2 Pre-process and post-process of the neural

network .............................................................. 5
2.3 Algorithm performance ...................................... 6
3 eIQ inference with Glow NN ...............................6
3.1 Quantization and compilation with Glow NN ......6
3.2 Memory footprint and latency analysis .............. 7
3.3 Quantization precision verification ..................... 8
4 Person detector in application .......................... 9
4.1 System design ................................................... 9
4.2 Overall performance ........................................ 11
5 Conclusion .........................................................13
6 Reference ........................................................... 13
7 Note About the Source Code in the

Document ...........................................................13
8 Revision history ................................................ 14
9 Legal information ..............................................15

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 8 May 2023
Document identifier: AN13924


	1  Introduction
	2  Multiple person detection neural network
	2.1  Neural network with ShuffleNet-V2
	2.2  Pre-process and post-process of the neural network
	2.3  Algorithm performance

	3  eIQ inference with Glow NN
	3.1  Quantization and compilation with Glow NN
	3.2  Memory footprint and latency analysis
	3.3  Quantization precision verification

	4  Person detector in application
	4.1  System design
	4.2  Overall performance

	5  Conclusion
	6  Reference
	7  Note About the Source Code in the Document
	8  Revision history
	9  Legal information
	Contents

