AN13778

Porting VGLite Driver for Bare Metal or Single Task

Rev. 0 — 18 November 2022

Application note

Document information

Information Content
Keywords VGLite, bare metal, single task
Abstract

The VGLite middleware includes VGLite driver, font and text draw API, and
VGLite Elementary Library.

NXP Semiconductors AN1 3778

Porting VGLite Driver for Bare Metal or Single Task

1 Introduction

The VGLite middleware includes VGLite driver, font and text draw API, and VGLite
Elementary Library. The VGLite driver provides a set of native APlIs that supports 2D
vector-based and 2D raster-based operations. It can be used as the interface to 2D GPU
hardware in the NXP i.MX RT500, i.MX RT1160, and i.MX RT1170 series chips. Font and
text draw APl and VGLite Elementary Library are based on the native API. All APl and
library in the VGLite middleware are platform independent and the implementation in the
NXP MCUXpresso SDK is only for FreeRTOS.

This document:

* outlines the middleware components and driver architecture, including folder hierarchy
and brief description of each folder.

* analyzes how driver supports multiple tasks, especially command buffers management
to support multi-task.

* gives the driver porting for bare metal in details.

« provides the porting for RTOS to support single task.

The VGLite Driver Porting Guide (document IMXRTVGLITEPG) provides the most
information about porting the VGLite driver to a specific OS platform. This document
extends Its content with the analysis of command buffers management and command
submission to GPU hardware.

The audience is encouraged to read VGLite Driver Porting Guide (document
IMXRTVGLITEPG) before starting this document.

2 VGLite middleware architecture

AN13778

21

The VGLite middleware is in the middleware\vglite folder under SDK installation root. It
consists of the following components:
* VGLite native API

¢ Elementary library
* Font and text support

VGLite

Middleware

VGLite Driver API

Figure 1. VGLite middleware architecture

VGLite native API

The VGLite API driver is the core of VGLite middleware. It provides a feature set smaller
than that of OpenVG with maximum 2D vector/raster rendering performance but having
minimum memory footprint. It is used for the application in the embedded system

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022
2/17

https://www.nxp.com/docs/en/user-guide/IMXRTVGLITEPG.pdf
https://www.nxp.com/docs/en/user-guide/IMXRTVGLITEPG.pdf

NXP Semiconductors AN1 3778

AN13778

211

21.2

2.2

Porting VGLite Driver for Bare Metal or Single Task

where memory size is limited. For detailed API information, refer to i. MX RT VGLite API
Reference Manual (document IMXRTVGLITEAPIRM).

The VGLite driver consists of the following components:

¢ User API functions
— OS independent layer
— OS-specific layer
* Kernel driver
— OS independent HAL layer
— OS-specific layer

User API

The User API includes a set of API functions, type and structure definitions for
parameters, and related enumerations. All are defined in a header file vg lite.h.
Application must include this file in the project to use 2D GPU for vector and/or raster
operations.

To easily port the driver to a new specific OS, the code is layered. The OS independent
layer implements the main functions of the driver. It hardly needs any modification while
porting it to a new OS platform.

The OS-specific layer of user API provides the OS abstract layer executed in the

use space. It supports with OS services that include mutexes and semaphores
synchronization objects, VGLite commands queue, multiple tasks maintenance and
management, and OS-specific memory management for application. In general, these
codes are OS specific and executed in the user space if OS separates user space and
kernel space.

Kernel driver

The VGLite kernel driver is expected to execute in the kernel space. It receives the
request from VGLite User API to manipulate the GPU hardware to do corresponding
operations and/or provide other OS kernel-specific services. To port the kernel driver to a
new OS, it is also well layered.

The OS independent Hardware Abstract Layer (HAL) abstracts the GPU hardware-
related common operations for kernel driver. These operations include initialization and
de-initialization of GPU hardware to allocate/free OS kernel resources for GPU, memory
allocation and free for the physical memory preserved for VGLite application, memory
map and unmap for common physical memory, GPU register access, GPU reset, and
synchronization between CPU and GPU.

The OS-specific kernel driver is like that of User API. It provides the OS services required
by VGLite kernel driver, such as synchronization objects, OS memory management. If an
OS running is separated into user space and kernel space, execute these codes in the
kernel space. In another RTOS, for instance, FreeRTOS, there is no separation between
user space and kernel space. The OS-specific layer of kernel driver and that of user API
can share the implementation.

Elementary library

The VGLite driver API provides a set of primitive interfaces to render both vector graphics
and images. Using these APIs to draw the graphic resources of application, developer

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022
3717

https://www.nxp.com/webapp/Download?colCode=IMXRTVGLITEAPIRM&location=null

NXP Semiconductors AN1 3778

2.3

Porting VGLite Driver for Bare Metal or Single Task

must elaborately define the path data that includes a sequence of segment commands
and their coordinates to represent the expected shape of the graphic resources in the
application. It is not easy to manually control the layout of the geometry in the application
that will be rendered using the primitive data. It also takes quite a bit effort to render
these graphics as the expected appearance in a GUI of application.

To eliminate the effort of the developer to render the complex graphics, the Elementary
library is provided. Elementary API is more effective and able to produce higher quality
output than VGLite driver API. It wraps the VGLite API but provides a simple and intuitive
method to load up and manipulate the graphic resources based on the three types of
specific Elementary objects. The VGLite Toolkit provides a set of tools to convert specific
SVG file or raster image into these objects. For details about VGLite Toolkit, see VGLite
Toolkit user guide.

Elementary objects

EVO EGO 2o
single vector polygon roup of vector polygons AR R
g polyg group polyg image/text

Figure 2. Elementary objects

The OS-specific code of Elementary library is in the elementary\src\elm os.c. The
only one routine is to implement the local storage of a task.

Font and Text support

Although VGLite hardware does not support to draw text using various fonts, VGLite
middleware implements a prototype of font and text support as a software extension of
VGLite. The vector font data is created by vft _create from an SVG file which contains
an embedded font. Only SVG file that defines the font glyphs using the font and glyph
objects can be supported in current implementation.

3 Support multiple tasks

AN13778

VGLite driver API can be used simultaneously by different tasks. Each task uses
hardware as if only itself is using the hardware without concern on any other task
who is using GPU hardware at the same time. This benefit is from the VGLite driver
implementation to support multiple instances.

VGLite driver AP| uses some mechanisms including task local storage, synchronization
objects (Event, Mutex, or notification), and command buffer queue to guarantee multiple
tasks simultaneous working.

The command queue task is created in the VGLite driver to implement one hardware to
serve multiple tasks. Tasks submit their command into the command queue. Command
queue task is responsible for taking a command away from the queue and submitting it
into the GPU hardware to execute.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022
4/17

NXP Semiconductors AN1 3778

AN13778

3.1

3.2

3.3

Porting VGLite Driver for Bare Metal or Single Task

Task local storage

To support multiple tasks drawing, each task must create/destroy its drawing context
usingthe vg lite init/vg lite close APl The drawing context contains

all information that both driver APl and hardware will use to operate a command. To
maintain the drawing context for a task, each task allocates a buffer to save its context
when the drawing context is created and frees the buffer when the drawing context is
destroyed.

Different OS has its mechanism to implement a task local storage for above purpose.
With task local storage, a task can correctly submit a command to hardware. Then
hardware can process the command to finish the vector graphic drawing or render a
raster image texture.

Synchronization

In multiple tasks environment, two or more tasks are likely submitting their command
buffers at the same time. And a task may submit a new command buffer but the previous
submitted command buffer likely is not finished processing or even still in the queue and
not processed by hardware at all. All these cases need synchronization objects to have
VGLite driver correctly communicate between tasks and/or with command queue.

Message queue supported by almost OS is used to synchronize the command buffers
submit from different tasks. To simplify command management of a task and minimize
the buffer use, a task uses two command buffers in ping-pang mode. And a task is only
allowed to submit one command buffer into the command queue. The task must wait
for the notification sent by command queue task to know that the hardware processes
the previous submitted command buffer. After receiving the notification, the waiting task
can submit a new command buffer into the command queue. In driver implementation,
an event is created and bound with command buffers of a task and is used for this
synchronization.

After a task submits a command buffer into the command queue, it does not need to wait
this command buffer proceeded other than does something else such as preparation for
the next command of drawing. The submitted command buffer is finally taken away from
the command queue and submitted into GPU hardware to execute by command queue
task. Command queue task then waits for this command done by hardware by waiting for
a notification. When GPU hardware finished the command, an interrupt of GPU is fired
that triggers the GPU ISR to send the notification. An event is used for this notification in
the VGLite driver.

Command buffer management

To support multiple tasks, the VGLite driver is designed to use a queue to maintain the
command buffers submitted from different tasks. Each task submits the command buffer
after it is ready for GPU hardware to process. The different tasks may have different
priorities but commands buffers from different tasks are maintained in the queue with
FIFO mode. The command buffer submitted first into the queue is first taken away

from the queue and sent hardware to process. With this method, a task feels like it is
occupying GPU alone. There are three stages for a command buffer in the VGLite driver:

1. Commands of hardware operations and related data are assembled into a buffer
when a task calls VGLite APIs to draw vector graphics or render an image. At last
driver submits this command buffer into a command buffer queue by calling the
queue write method serviced by OS.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022
57117

NXP Semiconductors AN1 3778

Porting VGLite Driver for Bare Metal or Single Task

2. Submitted command buffer is appended at the end of the queue. The command
queue task takes the command buffer away from the head of the queue and sends it
to GPU hardware to process.

3. Commands and related data in the command buffer are processed by GPU
hardware. An interrupt is generated after all commands in the buffer are processed.

VGLite driver uses two command buffers in ping-pang mode for each task, creates a
synchronization object, and binds it with command buffers. An application calls VGLite
APIs to write the commands and necessary data into a command buffer, then submit it
for hardware process. Driver does not wait for the completion of the currently submitted
command buffer processed by hardware but waits for the completion of the previously
submitted command buffer processed by hardware. As a result, only one command
buffer is submitted to process at any time in a task. Multiple tasks use the same way to
submit their command buffer as if each task uses the hardware alone without aware of
other tasks.

The command buffer submitted by a task is not immediately submitted into hardware
for process. Instead, it is first written to the tail of the queue that maintains all command
buffers submitted from different tasks with FIFO mode. VGLite driver uses a command-
queue task to take a command buffer from the head of the queue and send it into
hardware to process. The command-queue task works in synchronization mode to wait
for the notification of command buffer processing done after it sends a command buffer
into hardware. When command-queue task receives the notification from GPU ISR to
indicate that the just submitted command buffer has been processed, it sends another
notification by triggering the synchronization object that is bound to the processed
command buffer to wake up the task who is waiting for the completion of this command
buffer processing. The command-queue task should be created with high priority so that
it processes the command buffers in the queue timely and efficiently. A preprocessor
symbol is defined for the priority value that user can modify for his application.

#ifndef QUEUE TASK PRIO
#define QUEUE TASK PRIO (configMAX PRIORITIES - 1)
#endif /* QUEUE TASK PRIO */

The GPU generates an interrupt after the commands in a command buffer are executed
by hardware. Then the ISR of GPU sends a notification to command-queue task to notify
it that the hardware completes all commands in the command buffer that the command-
queue task just sent into hardware to execute.

Figure 3 shows the process of command buffer management in the VGLite driver. In
some conditions, the driver must wait for the completion of the command buffer that
is submitted just now. The driver calls stall method to wait for the completion of the
commands in the command buffer.

AN13778 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 18 November 2022

6/17

NXP Semiconductors AN1 3778

Porting VGLite Driver for Bare Metal or Single Task

Submit cmd Cmd queue
Command Queue

. Read cmd buffer from
[RE— .- Wat for motification of J | | e | | |_ — — queueandsubmitk to GPU — — _m
J— prev. cmd buffer done ; 10 e
| /
/
!

Set command buffer stae -

|
|
|
|
I "‘%’s Wat for submitted =
| ! ““‘l,,; cmd buffer done W&, ’
| / P .
I / R l
Write command ' ‘ z
| buffer to queue state = done
[2 . Al Set cmd buffer state 4
Send notification 1o

I o l command queue task
I Twoways
b e e e e e — - - = -~ - —-—-0 Send notification of cmd

Wait for notification of o Naotify —(4— — - buffer done to task who

- ————— © submited it ISR

prev. cmd buffer done

lY

Lo — Forward notification

Stall

Figure 3. Process of command buffer management

4 Porting driver for bare metal

The VGLite driver APl in the SDK is implemented for FreeRTOS and support multiple
tasks. Bare metal driver has no request of supporting multiple tasks. To use GPU
hardware resource, call its APls in sequence .

According to the mentioned code structure, directly reuse the code of OS independent
layer directly since they are just logic code of APl implementation without accessing
hardware resource, or only accessing the code of OS abstract layer. To eliminate the
effort of code maintenance and upgradation in the future, the porting reuses the code and
changes the OS independent layer as little as possible.

The following subsections simplify the command buffer management for bare metal and
describe the porting for different parts of VGLite middleware respectively.

4.1 Command buffer management

The OS independent layer uses two command buffers in ping-pang mode. But bare
metal driver only needs to process the command buffers from the bare metal task. The
command queue is not needed that makes the command buffer management for bare
metal simpler than multiple tasks.

The prepared command buffer is submitted to GPU hardware directly. Same as multiple-
task, only one command buffer can be submitted at any time. It is not mandatory for
driver to wait for the completion of submitted commands processed by GPU after it’s
submitted. But before submitting the next command buffer, code needs to check if the
executing of previous submitted commands is completed. The command buffer can only
be submitted after the previous submitted commands are processed by GPU. Bare metal

AN13778 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 18 November 2022

7117

NXP Semiconductors AN1 3778

Porting VGLite Driver for Bare Metal or Single Task

has no synchronization mechanism available in an OS but polling. Figure 4 shows the
flow of a command buffer.

Submit cmd

Wait for interrupt

Setint_done = TRUE

Stall ISR

‘ Figure 4. Command buffer flow

4.2 User API porting

4.2.1 OS independent layer

The code of OS independent layer can be reused. Due to command buffer management
change, the below macro definition in the vg lite.c should be changed.

#define CMDBUF IN QUEUE (context, id) \
(vg_lite os event state (& (context)->async _event([(id)])
== VG_LITE IN QUEUE)

Considering the fact that a command buffer can only be submitted after the previous
command buffer is completely processed, this check is actually redundant because the
result is always false. The change is just to define it as FALSE.

#define CMDBUF IN QUEUE (context, id) FALSE

To make driver efficient and code size small, the preprocessor directive can be added to
exclude the related code snippet that checks this condition same as following:

#if !defined(BAREMETAL)
if (CMDBUF IN QUEUE (&context->context, command id))
VG_LITE RETURN ERROR(stall (context, 0));
#endif

All codes used for multitasks support can be isolated by preprocessor building
variable. These codes include flush (), update context buffer (),

AN13778 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 18 November 2022

8/17

NXP Semiconductors AN1 3778

AN13778

4.2.2

Porting VGLite Driver for Bare Metal or Single Task

push_states_to context () and has valid context buffer ()functionsin
vg_lite.c file. They are never used in the bare metal case.

Anew APl vg lite error t vg lite query idle(uint32 t* state) is
added to give application more flexibility to use VGLite. For example, application can
call vg lite flushtoreplace vg lite finish to submit the commands to draw
vector path or render image and not wait the commands done but do something else.
Application does not check GPU status until it uses or renders the result of drawing.

OS-specific layer
The bare metal can be regarded as a special OS platform. The main modification of the
porting for bare metal is to implement the bare metal specific code.

Based on the description of command buffer’s flow afore, the command-buffer-queue is
removed. The synchronization objects between command buffer queue and ISR, queue
and task are not needed anymore.

Task local storage is implemented by a pointer variable as follows:

static void* pTLS;
int32 t vg_lite os_set_tls(void* tls)
{
if (tls == NULL)
return VG _LITE INVALID ARGUMENT;
pTLS = tls;
return VG LITE SUCCESS;
}
void * vg_lite os_get tls()
{
return pTLS;
}
void vg_lite os_reset tls()

{

pTLS = (void*)O0;
}

The following functions of OS specific must be implemented as follows:

void * vg_lite_os_malloc (uint32 t size)
{ return malloc (size);
ioid vg_lite os_free(void * memory)
{ free (memory) ;
ioid vg_lite os_sleep (uint32 t msec)
{ SDK DelayAtLeastUs (msec * 1000,
SDK_DEVICE MAXIMUM CPU CLOCK FREQUENCY) ;
int32_t vg_lite_os_initialize(void)
{ int done = TRUE;
return VG LITE SUCCESS;
}

void vg_lite os_deinitialize (void)

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022
9/17

NXP Semiconductors AN1 3778

AN13778

Porting VGLite Driver for Bare Metal or Single Task

{
}
int32 t vg_lite os_lock()
{

return VG LITE SUCCESS;
}
int32 t vg_lite os_unlock()
{

return VG LITE SUCCESS;
}

The above functions can be defined as symbols to get small code size. For example, to
define vg_lite_os_malloc as followings:

#define vg lite os malloc(size) malloc(size)

The command buffer is submitted into GPU directly. A flag is used to indicate the status
of the submitted command buffer. The flag is checked to get the GPU idle or busy.

static volatile uint32 t int done;
int32 t vg lite os_submit (uint32 t context, uint32 t physical,
uint32 t offset, uint32 t size, vg lite os async event t
*event)
{
curContext = context;
/* Wait previous command done */
while (!int done);
/* Clear interrupt done flag */
int done = FALSE;
vg_lite hal poke (VG LITE HW CMDBUF ADDRESS, physical +
offset);
vg lite hal poke (VG LITE HW CMDBUF SIZE, (size +7)/8);
return VG LITE SUCCESS;
}
int32 t vg_lite os wait(uint32 t timeout,
vg lite os async event t *event)
{
while (!int done);
return VG _LITE SUCCESS;
}
void vg_lite os_IRQHandler (void)
{
uint32 t flags = vg lite hal peek (VG LITE INTR STATUS) ;
if (flags) {
/* Set interrupt done flags. */
int done = TRUE;
if (IS_AXI BUS ERR(flags))
{
vg_lite bus error handler();

}

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022
10/17

NXP Semiconductors AN1 3778

Porting VGLite Driver for Bare Metal or Single Task

4.3 Kernel driver

Bare metal, as a special OS platform, considering the VGLite driver architecture
discussed above, is same as FreeRTOS to reuse the OS-specific code in the user API
layer for the kernel layer. There is no concept of user space and kernel space.

As a result, the porting for kernel driver is trivial. It is almost to do nothing but just to
remove the vg lite hal wait interrupt fromthe vg lite hal.c file. The bare
metal driver uses the polling GPU busy statue to replace the notification mechanism of
OS environment.

5 Porting driver to support single task

AN13778

The VGLite driver in the SDK release package supports the multiple tasks. To support
multiple tasks, the VGLite driver must submit the command buffers existing in the
command queue into GPU to execute and get the notification of the command processed
by hardware. Especially, save the hardware context of currently being processed
command of a task correctly while the hardware switches to process the next command
from the other task. Likewise, reload the previous saved context of the new task into the
GPU before executing its command. To have maximum performance in the multitask
case, the VGLite always appends an operation into the command buffer to flush the
command execution result from internal cache into the buffer. These code and operations
take time to be executed even if there’s only one task running in the system.

There is always only one task using VGLite driver in most embedded application. But
the code and operations in the VGLite driver to support multiple tasks still need time to
run. It is meaningful to modify the VGLite driver to only support single task to get a good
performance.

The driver with RTOS but to support single task is very similar to the bare metal except
that the synchronization object is available in RTOS. After submitting a command

buffer into GPU hardware in the bare metal driver, replace the polling method with the
synchronization mechanism provided by RTOS service. It is easy to use bare metal driver
as the start of porting for single task driver with RTOS. Comparing with the bare metal
driver, the porting for VGLite driver for single task only exists in the OS-specific layer. The
OS independent layers are almost same as that of bare metal driver and can be reused.
Figure 5 shows the working flow of single task driver with RTOS support.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022
11/17

NXP Semiconductors AN1 3778

Porting VGLite Driver for Bare Metal or Single Task

Submit cmd

Wait for interrupt

Setint_done = TRUE

ve

Sema phore

Stall

‘ Figure 5. Working flow of single task driver with RTOS support

5.1 OS-specific layer

The porting OS-specific layer from the code of bare metal to support single task includes
the following APIs:

* Map memory allocate/free APIs to memory allocation/free routines of RTOS. The below
code is the example poring for FreeRTOS.

void * vg_lite_os malloc(uint32 t size)
{

return pvPortMalloc (size) ;

}

void vg_lite os_ free(void * memory)
{

vPortFree (memory) ;

}

¢ Implement sleep API using RTOS’s delay routine. It is same as the implementation for
multiple tasks.

void vg_lite os_sleep (uint32 t msec)
{

vTaskDelay ((configTICK RATE HZ * msec + 999) / 1000);
}

* Define a global semaphore variable int queue, create a semaphore synchronization
objectinvg lite os initialize (), andassignitto int queue.

int32 t vg _lite os_initialize (void)

AN13778 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. Al rights reserved.

Application note Rev. 0 — 18 November 2022

12/17

NXP Semiconductors AN1 3778

Porting VGLite Driver for Bare Metal or Single Task

int done = TRUE;
int queue = xSemaphoreCreateBinary();
return VG LITE SUCCESS;

}

*Invg lite os wait (), check whether GPU is still processing the command
(int done is false). If busy, wait for semaphore to become available.

int32 t vg_lite os wait(uint32 t timeout,
vg lite os async event t *event)

{

if (int done || (xSemaphoreTake (int queue, timeout /
portTick PERIOD MS) == pdTURE) {
if (IS _AXI BUS ERR(int flags)) {

vg lite bus error handler () ;
}
int flag = 0;
}
return VG LITE SUCCESS;
}

*Invg lite os submit (), check whether the GPU is busy with command
(int done is false). If busy, wait for semaphore to become available.

* In GPU ISR, use the semaphore to wake up any code that is waiting for semaphore
available.

void vg lite os IRQHandler (void)
{
uint32 t flags = vg lite hal peek (VG LITE INTR STATUS) ;

portBASE TYPE xHigherPriorityTaskWoken = pdFALSE;

if (flags) {
/* Set interrupt done flags. */
int done = TRUE;
int flags |= flags;

/* Wake up any waiters. */
if (int gqueue) {
xSemaphoreGiveFromISR (int queue,
&xHigherPriorityTaskWoken) ;
if (xHigherPriorityTaskWoken != pdFALSE)
{

POrtYIELD FROM ISR (xHigherPriorityTaskWoken) ;

6 Run examples

There are two projects named clock freertos and tiger freertos inthei.MX
RT1170 SDK package used as the reference of the examples of AN13778SW to test the
bare metal or single task VGLite drivers. The examples in AN13778SW have the similar
code framework and exactly same function as those in SDK package. All code is based
on the i.MX RT1170 SDK 2.11.x.

AN13778 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 18 November 2022

13/17

https://www.nxp.com/docs/en/application-note-software/AN13778SW.zip
https://www.nxp.com/docs/en/application-note-software/AN13778SW.zip

NXP Semiconductors AN1 3778

7 Conclusion

6.1

6.2

Porting VGLite Driver for Bare Metal or Single Task

Figure 6 shows the cascade structure of VGLite driver in AN13778SW. The kernel
FreeRTOS-specific layer is shared by multitask and single task.

vglite

elementary

font

inc > API .h files

VGLite VGLite User OS independent layer
bm » \/GLite User bare metal specific layer
rtos > \/GLite User freertos specific layer (multitask)
rtos_single_task VGLite User freertos specific layer (single task)

VGLiteKernel » VGLite Kernel OS independent layer
bm > \/GLite Kernel bare metal specific layer
rtos > \/GLite Kernel freertos specific layer

Figure 6. VGLite driver

Baremetal examples

Two projects clock bmand tiger bmin AN13778SW are used to demonstrate the
bare metal VGLite driver. To use the bare metal driver, the bare metal specific code under
VGLite/bm and VGLiteKernel/bm is added into the project as OS-specific layer
code. To isolate the unused code, define the preprocessor variable BAREMETAL.

The additional vg lite query idle () APl is provided for application to query the
GPU status. It is very useful for application to call vg 1ite flush () to submit all
commands into GPU to process but not waiting them done. Instead, application calls
vg lite query idle() to check if GPU finishes all submitted commands before
using the drawing result of a frame. With this method, the CPU can run other code while
GPU is busy with executing the command.

Single task examples

The change for VGLite driver to support single task only includes the OS-specific layer.
The RTOS environment and APlIs are still exactly same as that of multiple tasks. And
multiple tasks environment is unknown to an application. An application uses the VGLite
when it is using the hardware without any concern about the other task who is also using
GPU hardware at the same time. So, the code of examples in the SDK can be reused
without any change.

As discussed in the previous paragraph, only OS-specific code of user layer in the driver
needs to be changed. The driver code under VGLite/rtos_single task replaces the
code under VGLite/rtos in the default project. To isolate all unused code, define the
preprocessor variable ONE_TASK_SUPPORT.

AN13778

The VGLite driver code is well layered and only OS-specific layers need to be changed
for bare metal or any other RTOS. For RTOS whose running is not separated as user
space and kernel space, the kernel OS-specific layer can reuse the code of user OS-
specific code.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022
14 /17

https://www.nxp.com/docs/en/application-note-software/AN13778SW.zip
https://www.nxp.com/docs/en/application-note-software/AN13778SW.zip

NXP Semiconductors

AN13778

8 References

Porting VGLite Driver for Bare Metal or Single Task

The user APl code in the vg_1lite.c thatis not used by bare metal and single task
are well isolated by the preprocessor variable in AN13778SW. The future porting on
the latest driver still can reference it. Because the isolated code is almost related to the

multitask support.

According to our sanity test and customer’s test, the driver only supporting single task
has overall about 3 - 8 % performance improvement compared with multitask support.

1. i.MX RT VGLite API Reference Manual (document IMXRTVGLITEAPIRM)

2. VGLite Driver Porting Guide (document IMXRTVGLITEPG)

9 Revision history

AN13778

Revision number

Date

Substantive changes

0

18 November 2022

Initial release

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022

15/17

https://www.nxp.com/docs/en/application-note-software/AN13778SW.zip
https://www.nxp.com/webapp/Download?colCode=IMXRTVGLITEAPIRM&location=null
https://www.nxp.com/docs/en/user-guide/IMXRTVGLITEPG.pdf

NXP Semiconductors

AN13778

10 Legal information

Porting VGLite Driver for Bare Metal or Single Task

10.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

10.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN13778

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

10.3 Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

© 2022 NXP B.V. All rights reserved.

Application note

Rev. 0 — 18 November 2022

16 /17

mailto:PSIRT@nxp.com

NXP Semiconductors

AN13778

Porting VGLite Driver for Bare Metal or Single Task

Contents

1 Introduction ... 2
2 VGLite middleware architecture 2
21 VGLite native APl ... 2
2141 USEr AP ..o 3
21.2 Kernel driver ... 3
2.2 Elementary library ..o 3
2.3 Font and Text supportccoeveeeeiiiiiiiiiiieees 4
3 Support multiple tasksccccccerriiiiiiiniccccccccnnns 4
3.1 Task local Storageccccceeeeiiiiiieiiiiiiiee e 5
3.2 Synchronizationcccoiiiiiiiii 5
3.3 Command buffer management 5
4 Porting driver for bare metalcccccoeeeeeet 7
41 Command buffer management 7
4.2 User API portingooeriiiiiiieeeee e 8
421 OS independent layercccccooviiiieiieiicinee. 8
422 OS-specifiC layerooooiiiiiiee e 9
4.3 Kernel driver ... 11
5 Porting driver to support single task 1
51 OS-specific layerccooccvieiiiiiie e 12
6 Run examplesccccceemiiiiiiicicccccceseeceeeneeeeens 13
6.1 Baremetal examplesccccccviiieieiieeieeeneen, 14
6.2 Single task examplesccccooiiiiiiiiiiee 14
7 ConcluSion ... s 14
8 References ... 15
9 Revision history ... 15
10 Legal information ... 16

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 18 November 2022
Document identifier: AN13778

	1 Introduction
	2 VGLite middleware architecture
	2.1 VGLite native API
	2.1.1 User API
	2.1.2 Kernel driver

	2.2 Elementary library
	2.3 Font and Text support

	3 Support multiple tasks
	3.1 Task local storage
	3.2 Synchronization
	3.3 Command buffer management

	4 Porting driver for bare metal
	4.1 Command buffer management
	4.2 User API porting
	4.2.1 OS independent layer
	4.2.2 OS-specific layer

	4.3 Kernel driver

	5 Porting driver to support single task
	5.1 OS-specific layer

	6 Run examples
	6.1 Baremetal examples
	6.2 Single task examples

	7 Conclusion
	8 References
	9 Revision history
	10 Legal information
	Contents

