
AN13753
Develop the OpenCV Example with MCUXPresso IDE
Rev. 0 — 24 October 2022 Application note

Document information
Information Content

Keywords OpenCV, MCU, MCUXPresso IDE

Abstract OpenCV (Open Source Computer Vision Library) is an open-source library
that includes several hundreds of computer vision algorithms.

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

1 Introduction

OpenCV (Open Source Computer Vision Library: http://opencv.org) is an open-source
library that includes hundreds of computer vision algorithms.

OpenCV is released under a BSD license. It is free for both academic and commercial
use, designed for computational efficiency. With a strong focus on real-time applications,
OpenCV is written in optimized C++ and takes advantage of multicore processors.
OpenCV can run under Linux, Windows, and Mac OS X, interfaces for Python, Java,
MATLAB, and other languages. It provides a simple-to-use computer vision infrastructure
that enables building fairly sophisticated vision applications quickly.

To manipulate images, the OpenCV is not great. It is great for teaching the computer how
to see something.

Considering that the OpenCV is usually a PC dedicated computer vision library, which is
rare on MCU, we publish this document. This document introduces how to build OpenCV
examples on MCUXPresso IDE with OpenCV library. For details about how to build the
OpenCV Library, see Run openCV on Cortex-M7 MCU (document AN13725). Run it on
our RT-Series MCU platform, such as, i.MX RT1170 EVKB board.

2 OpenCV

OpenCV has a modular structure, which means that the package includes several shared
or static libraries. The following modules are available:

• Core functionality - a compact module defining basic data structures, including the
dense multi-dimensional array Mat and basic functions used by all other modules.

• Image processing - an image-processing module that includes linear and non-linear
image filtering, geometrical image transformations (resize, affine and perspective
warping, generic table-based remapping), color space conversion, histograms, and so
on.

• video - a video analysis module that includes motion estimation, background
subtraction, and object tracking algorithms.

• calib3d - basic multiple-view geometry algorithms, single and stereo camera
calibration, object pose estimation, stereo correspondence algorithms, and elements of
3D reconstruction.

• features2d - salient feature detectors, descriptors, and descriptor matchers.
• objdetect - detection of objects and instances of the predefined classes (for example,

faces, eyes, mugs, people, cars).
• highgui - an easy-to-use interface to simple UI capabilities.
• Video I/O - an easy-to-use interface to video capturing and video codecs.
• gpu - GPU-accelerated algorithms from different OpenCV modules.
• … some other helper modules, such as FLANN and Google test wrappers, Python

bindings, and others.

All the OpenCV classes and functions are placed into the cv namespace. Therefore, to
access this functionality from your code, use the cv: specifier or using namespace cv
directive:

cv::Mat H = cv::findHomography(points1, points2, CV_RANSAC, 5);

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
2 / 13

http://opencv.org/
https://www.nxp.com.cn/docs/en/application-note/AN13725.pdf
https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/group_core.html
https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/group_imgproc.html
https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/group_videoio.html

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

Or:

using namespace cv;
Mat H = findHomography(points1, points2, CV_RANSAC, 5);

Some of the current or future OpenCV external names may conflict with STL or other
libraries. In this case, use explicit namespace specifiers to avoid the conflicts:

Mat a(100, 100, CV_32F);
randu(a, Scalar::all(1), Scalar::all(std::rand()));
cv::log(a, a);
a /= std::log(2.);

Finally, let us talk about the Mat in OpenCV. If you want to use the OpenCV, the Mat is
your first step. The class represents an n-dimensional dense numerical array that can act
as a matrix, image, optical flow map, 3-local tensor, and so on.

The public attributes:

attribute description

MatAllocator* allocator Custom allocator

int cols The width of the image

int rows The height of the image. The cols and rows are (-1, -1) when the
matrix has more than two dimensions

uchar* data Pointer to the data

uchar* dataend -

uchar* datalimit -

uchar* datastart -

int dims The matrix dimensionality, >=2

int flags -

int* refcount Pointer to the reference counter

MSize size -

MStep step -

Table 1. 

There are many different ways to create cv::Mat object. Here are some popular ones:

1. Using cv::Mat::Create(nrows, ncols, type) method or the similar constructor
cv::Mat::Mat(nrows, ncols, type[, fill,_vale]) constructor. The type has the same
meaning, for example, CV_8UC1 means 8-bit single channel matrix and CV_32F2
means 2-channel (that is, complex) floating-point matrix.

 // make 7x7 complex matrix filled with 1+3j.
 cv::Mat M(7,7,CV_32FC2,Scalar(1,3));
 // and now turn M to 100x60 15-channel 8-bit matrix.
 // The old content will be deallocated
 M.create(100,60,CV_8UC(15));

2. Use a copy constructor or assignment operator. Matrix assignment is O(1) operation
because it only copies the header and increases the reference counter. You can use

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
3 / 13

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

the cv::Mat::clone() method to get a full (a.k.a. deep) copy of the matrix when you
need it.

3. To make a header for user-allocated-data:

 void init_mat_with_ptr(const unsigned char* pixels,
 int width, int height, int step)
 {
 cv::Mat img(height, width, CV_8UC3, pixels, step);
 cv::GaussianBlur(img, img, cv::Size(7,7), 1.5, 1.5);
 }

4. Use MATLAB-style matrix initializers, cv::Mat::zeros(), cv::Mat::ones(), and
cv::Mat::eye().

To release the data pointed by a matrix header before the matrix destructor is called, use
cv::Mat::release().

The next important thing is how to access the data. The elements are stored in row-major
order (row by row). The cv::Mat::data member points to the first element of the first
row. cv::Mat::rows contains the number of matrix rows and cv::Mat::cols contains the
number of matrix columns. There is yet another member, cv::Mat::step, used to actually
compute address of a matrix element.

Given these parameters, computer the address of the matrix element, M_{ij}, as below:

addr(M_{ij})=M.data + M.step*i + j*M.elemSize()

If you know the matrix element type, for example, it is float, then you can use
cv::Mat::at() method:

addr(M_{ij})=&M.at<float>(i,j)

The reference code is as below:

 // compute sum of positive matrix elements
 // (assuming that M is double-precision matrix)
 double sum=0;
 for(int i = 0; i < M.rows; i++)
 {
 const double* Mi = M.ptr<double>(i);
 for(int j = 0; j < M.cols; j++)
 sum += std::max(Mi[j], 0.);
 }

3 Create a MCUXPresso project

Make sure that the following items or the newest one have been installed on your PC:

• SDK: 2.11.0 for i.MX RT1170
• MCUXPresso IDE: 11.5.0
• Example: SDK_root\boards\evkmimxrt1170\demo_apps\hello_world_demo_cm7
• The libs: libopencv_world, libopenjp2, libjpeg-turbo, libpng, zlib; generated from the

source code of OpenCV according to Run openCV on Cortex-M7 MCU (document
AN13725).

To create a MCUXPresso project, perform the following steps:

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
4 / 13

https://www.nxp.com.cn/docs/en/application-note/AN13725.pdf

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

1. Import the hello world example through the Quickstart Panel:

Figure 1. Quickstart panel
2. The OpenCV needs C++, but the hello_world example is a C project. To edit the

project-file to enable the C++ feature, find the .project under your workspace and add
the below.

Figure 2. C++ supports
Then reopen the project using the MCUXPresso IDE.

3. The project supports the C++ now, but the settings for C++ are empty, only C is
required to be configured. The first is for MCU C++ compiler, including the header
path and the preprocessor symbols.

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
5 / 13

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

Figure 3. Preprocessor symbol and the includes path
In details, it Includes:

"${workspace_loc:/${ProjName}/drivers}"
"${workspace_loc:/${ProjName}/board}"
"${workspace_loc:/${ProjName}/source}"
"${workspace_loc:/${ProjName}/utilities}"
"${workspace_loc:/${ProjName}/drivers}"
"${workspace_loc:/${ProjName}/device}"
"${workspace_loc:/${ProjName}/component/uart}"
"${workspace_loc:/${ProjName}/component/lists}"
"${workspace_loc:/${ProjName}/startup}"
"${workspace_loc:/${ProjName}/xip}"
"${workspace_loc:/${ProjName}/CMSIS}"
"${workspace_loc:/${ProjName}/utilities}"
"${workspace_loc:/${ProjName}/device}"
"your_cv_path\opencv\build"
" your_cv_path \opencv\include"
" your_cv_path \opencv\modules\core\include"
" your_cv_path \opencv\modules\imgcodecs\include"
" your_cv_path \opencv\modules\imgproc\include"
" your_cv_path \opencv\modules\world\include"
" your_cv_path \opencv\modules\highgui\include"
" your_cv_path \opencv\modules\features2d\include"
" your_cv_path \opencv\modules\ml\include"
" your_cv_path \opencv\modules\video\include"

The pre-processor symbols include:

OPENCV_DISABLE_THREAD_SUPPORT=1
__NEWLIB__
CPU_MIMXRT1176DVMAA
CPU_MIMXRT1176DVMAA_cm7
XIP_BOOT_HEADER_DCD_ENABLE=1
USE_SDRAM
DATA_SECTION_IS_CACHEABLE=1
SDK_DEBUGCONSOLE=1
XIP_EXTERNAL_FLASH=1
XIP_BOOT_HEADER_ENABLE=1
PRINTF_FLOAT_ENABLE=0
SCANF_FLOAT_ENABLE=0
PRINTF_ADVANCED_ENABLE=0
SCANF_ADVANCED_ENABLE=0
FSL_SDK_DRIVER_QUICK_ACCESS_ENABLE=1
MCUXPRESSO_SDK
CR_INTEGER_PRINTF
__MCUXPRESSO
__USE_CMSIS

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
6 / 13

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

DEBUG

Configure the MCU C++ Linker, including the Libraries and also the Library search
path.

Figure 4. Library configurations
Note that the Library search path is where you place all the libraries.

4. As we know, the OpenCV is written by C++. To call the function, create a C++ file.
Simply, we rename the hello_word.c to hello_world.cc and retain the content.

5. To import the source image, either compressed as jpeg, PNG, or other raw-data
without any compressed. Here we use an ASM instruction, .incbin, to achieve this.
Create an asm file and add it into our project.
Like this, where you place this file is free, but it is better to place it in the same folder
with the hello_world.cc:

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
7 / 13

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

Figure 5. Add the test file
After including this ASM file, edit the file and add:

 .global img_start
 .global img_end

img_start:
 .incbin "data/lena.jpg"
img_end:

You can change the image to any you like. But if you want to use the Relative
path, the IDE finds the file from where you place the hello_world.cc, which means
that you must place all your image_data or image_folder to the same folder with
hello_world.cc. If not, the IDE cannot find the data.

6. Now the project of MCUXPresso is ready. To validate the project, write some code
and develop some examples.

4 Deploy some OpenCV examples on MIMXRT1170 EVK

This chapter introduces the code snippet about how to develop some OpenCV examples.
All the code can be found in the attachment. To call the code from the hello_word.cc, you
can either put the code into hello_world.cc or align them to a new C++ file. Also if you do
not want to rename the hello_world.c to hello_world.cc, do not forget to use the extern C
to declare your functions. Otherwise, the link error occurs.

1. To include the header, we only need one line, which is so friendly and handy.

#include "opencv2\opencv.hpp"

2. The OpenCV use the cv::Mat to organize the data, so first we need to declare and
define the input data and create a cv::Mat instance. Consider that we do not have
a filesystem, so we use an asm-instruction, .incbin, to import the picture. As we
have defined it in the previous chapter, we can use the symbol here. If the picture is
compressed, decode them to the process. So we can read the data from memory
and then call OpenCV to do the decoding. If the picture is raw-data, we can use it
directly:

extern uint8_t img_start[];

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
8 / 13

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

extern uint8_t img_end[];
#define IMG_LEN (img_end - img_start)
// compressed data
std::vector<char> data(img_start, img_start + IMG_LEN);
cv::Mat img = cv::imdecode(cv::Mat(data), IMREAD_UNCHANGED);
// raw data, need to aware the shape, and also the depth,
 such as rgb == CV_8UC3, equal to
// each pixel has 3 items, and each item is 8bits
Mat img(Size(480, 360), CV_8UC3);
memcpy(img.data, img_start, IMG_LEN);

3. Find contours and draw the contours:

vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(dst, contours, hierarchy, RETR_EXTERNAL,
 CHAIN_APPROX_SIMPLE);
// To display the contours
Mat resultImage = Mat ::zeros(dst.size(),CV_8U);
drawContours(resultImage, contours, -1, Scalar(255, 0, 255));

4. Now we perform a complex task to find squares. The challenge is to find all the
squares of a given picture, as shown in Figure 6.

Figure 6. Test data
The code snippet is below with multiple cv APIs, and the result is pushed into a
vector:

// returns sequence of squares detected on the image.
static void findSquares(const Mat& image,
 vector<vector<Point> >& squares)
{
 squares.clear();
 Mat pyr, timg, gray0(image.size(), CV_8U), gray;
 // down-scale and upscale the image to filter out the
 noise
 pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
 pyrUp(pyr, timg, image.size());
 vector<vector<Point> > contours;
 for(int c = 0; c < 3; c++)
 {
 int ch[] = {c, 0};
 mixChannels(&timg, 1, &gray0, 1, ch, 1);

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
9 / 13

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

 // try several threshold levels
 for(int l = 0; l < N; l++)
 {
 if(l == 0)
 {
 Canny(gray0, gray, 0, thresh, 5);
 dilate(gray, gray, Mat(), Point(-1,-1));
 }
 else
 {
 gray = gray0 >= (l+1)*255/N;
 }
 findContours(gray, contours, RETR_LIST,
 CHAIN_APPROX_SIMPLE);
 vector<Point> approx;

 // test each contour
 for(size_t i = 0; i < contours.size(); i++)
 {
 // approximate contour with accuracy proportional to
 the contour perimeter
 approxPolyDP(contours[i], approx,
 arcLength(contours[i], true)*0.02, true);
 // square contours should have 4 vertices after
 approximation
 if(approx.size() == 4 &&
 fabs(contourArea(approx)) > 1000 &&
 isContourConvex(approx))
 {
 double maxCosine = 0;

 for(int j = 2; j < 5; j++)
 {
 // find the maximum cosine of the angle between
 joint edges
 double cosine = fabs(angle(approx[j%4],
 approx[j-2], approx[j-1]));
 maxCosine = MAX(maxCosine, cosine);
 }
 if(maxCosine < 0.3)
 squares.push_back(approx);
 }
 }
 }
 }
}

5. To encode a raw-data to specified format, if you have a filesystem, get the data and
then write it to a file. If not, maybe you can download the memory to your PC and
check the result.

std::vector<uchar> decoded_img;
cv::imencode(".jpeg", img, decoded_img);
uchar *data = decoded_img.data();

Pay attention to the first parameter of the cv::imencode. Do not forget the . before
the format. It is .jpeg and not jpeg.

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
10 / 13

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

5 Reference

The files mentioned in the article are shipped in the attachments.

• https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/
index.html#doxid-d1-dfb-intro

• https://physics.nyu.edu/grierlab/manuals/opencv/classcv_1_1Mat.html

6 Revision history

Rev. Date Description
0 20 October 2022 Initial release

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
11 / 13

https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/index.html#doxid-d1-dfb-intro
https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/index.html#doxid-d1-dfb-intro
https://physics.nyu.edu/grierlab/manuals/opencv/classcv_1_1Mat.html

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

7 Legal information

7.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

7.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN13753 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 24 October 2022
12 / 13

mailto:PSIRT@nxp.com

NXP Semiconductors AN13753
Develop the OpenCV Example with MCUXPresso IDE

Contents
1 Introduction ... 2
2 OpenCV .. 2
3 Create a MCUXPresso project 4
4 Deploy some OpenCV examples on

MIMXRT1170 EVK ..8
5 Reference ... 11
6 Revision history .. 11
7 Legal information ..12

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 24 October 2022
Document identifier: AN13753

	1 Introduction
	2 OpenCV
	3 Create a MCUXPresso project
	4 Deploy some OpenCV examples on MIMXRT1170 EVK
	5 Reference
	6 Revision history
	7 Legal information
	Contents

