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1   Overview

This application note presents the process of building and deploying deep learning models for Smart Sensing
Appliances. It also highlights how to validate and evaluate the performance of a model by running it through
different inference engines on an Embedded Sensing Device. By Embedded Sensing Device, we mean
an MCU-based device capable to measure through sensors various environmental parameters, such as,
acceleration, magnitude, orientation, temperature, pressure, sound, and electric current.

This document can be used as a guideline for building applications that rely on deep learning applied on data
collected from sensors to perform classification and detection of various events on MCUs. There is a broad
range of use cases, which can be approached using this document, such as, preventive maintenance, state
detection, state monitoring, activity recognition, gesture recognition, and acoustic event detection.

This document describes how to solve a real use case by building a Convolutional Neural Network (CNN) on a
host machine and deploying and benchmarking it on an MCU-based device.

The development and deployment uses the NXP SDK and the eIQ technology.

For more details and resources, see the ML-Based System State Monitor Application Software Pack page.

2   Introduction of eIQ and runtime inference engines

The NXP eIQ Machine Learning (ML) software development environment enables the use of ML algorithms
on NXP EdgeVerse microcontrollers and microprocessors, including i.MX RT crossover MCUs and i.MX family
application processors. eIQ ML software includes an ML workflow tool called eIQ toolkit, with runtime inference
engines, neural network compilers, and optimized libraries. This software uses open source and proprietary
technologies. It is fully integrated into our MCUXpresso SDK and Yocto development environments, making it
easy to develop complete system-level applications.

Figure 1. eIQ software ecosystem
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The runtime inference engines included in the eIQ component of the MCUXpresso Software Development
Kit (SDK) for microcontrollers, which is evaluated in this document, are counted on the left side of Figure 1:
DeepViewRT, TensorFlow-Lite/TensorFlow Lite Micro, and Glow.

2.1  DeepViewRT
eIQ Inference with DeepViewRT is a platform-optimized, runtime inference engine that scales across a wide
range of NXP devices and neural network-compute engines. Provided free of charge, this inference engine
enables a compact code size for resource-constrained devices, including the i.MX RT crossover MCUs (Arm
Cortex-M cores) and i.MX applications processors (Cortex-A and Cortex-M cores, dedicated Neural Processing
Units (NPU) and GPUs).

2.2  TensorFlow Lite for Microcontrollers
eIQ inference with TensorFlow Lite for Microcontrollers (TF micro) is optimized for running machine-learning
models on resource-constrained devices, including NXP i.MX RT crossover MCUs.

This TF micro implementation is faster and smaller than the traditional open source TensorFlow Lite platform for
machine learning, enabling inference at the edge with lower latency and smaller binary size.

2.3  Glow
The Glow machine learning compiler enables ahead-of-time compilation. The compiler converts the neural
networks into object files. Then, the user converts them into a binary image to increase performance and reduce
memory footprint compared to a traditional runtime inference engine.

3   Application development workflow

Sensor Data

Host + Device

Model
Development
Host Machine

Model
Deployment

Embedded Device

Figure 2. Application development workflow

The application development follows the workflow shown in Figure 2.

1. Sensor data
This phase defines and creates the data collection for model training and validation. The application running
on the embedded device collects and transfers sensor data to the host machine where the dataset is stored.

2. Model development
eIQ Toolkit enables machine-learning development for vision-based models with development workflow
tools, along with command-line host tool options as part of the eIQ ML software development environment.
Model development and training can also be done using one of the deep learning frameworks available. The
model is developed on the host machine by going through the phases shown in Figure 3.

:

Process DatasetImport Dataset Define Model
Architecture Train Model Validate Model

on Host
Export for

Embedded Device

Figure 3. Model development workflow
3. Model deployment
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The model created in the previous phase is deployed and evaluated on the embedded device through the
runtime inference engines defined in Section 2.

4   Going through a real use case

This chapter follows the workflow diagrams in Section 3 and describes how to build and deploy on an
embedded device a model capable to monitor the input sensor data and detect the current state of the device.
The main objectives are to:

• Illustrate how to collect and record the device states dataset on a host machine.
• Aggregate and analyze sensor data on the host machine.
• Create, train, and validate a classification model on the host machine.
• Convert the model into a format suited for an embedded device.
• Evaluate the model on the embedded device.

4.1  Prerequisite
Alongside with this document, the ML-based system state monitor delivers the applications for the host machine
and embedded devices:

• ML_app – the host machine application used to generate the ML-model, developed in Jupyter Notebook with
Python kernel.

• MCU_app – the embedded device application, developed in MCUXpresso IDE.

Software requirements on the host machine:

• ML-based system state monitor source code.
• Jupyter Notebook (Python, TensorFlow, Keras, and so on).
• MCUXpresso IDE.
• eIQ toolkit.

Hardware requirements:

• Windows host machine.
• Target embedded device.
• SD card – The SD card usage is optional but can facilitate the recording of sensor data.
• Sensor board – FRMD-STBC-AGM01 or newer version FRDM-K22F-A8974

The usage of the external sensor shield is optional and only required if the needed sensors are not already
populated on the evaluation kit.

• Fan setup – This configuration depends on the system setup and available parts.
For the presented case study, a 5V DC Fan was attached to the evaluation kit and powered through an
Arduino Proto-Shield.

Figure 4 presents the evaluated embedded setup built by using the MIMXRT117-EVK and the parts described
above stacked over the Arduino interface. For more details on software and hardware installation, see the Lab
Guide.
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Embedded EVK
Sensor Board

Arduino Shield
Fan

Figure 4. Stacked embedded setup

4.2  Use case
The case study that is exemplified in this application note is a Fan State Classifier using Accelerometer
Sensing, but it can be extended to any other use case.

The purpose of this application is to determine the current state of a fan by running a DL model on the data read
from the accelerometer. The predefined classes are the following:

• FAN-OFF – The fan is turned off.
• FAN-ON – The fan is turned on and running in normal conditions.
• FAN-Clogged – The fan is turned on and the airflow is obstructed.
• FAN-Friction – The fan is turned on and excessive friction or a blade fault is detected.

OFF ON Clogged Friction
Figure 5. Fan state classifier

4.3  Applications
The development workflow for the presented use case is exemplified with two application versions, v1 and v2.

4.3.1  Application v1

The application v1 consists of two main components:

• ML_app – the host machine application used to generate the ML-model, developed in Jupyter Notebook with
Python kernel.

• MCU_app – the embedded device applications, developed in MCUXpresso IDE.

The MCU application v1 provides a manually crafted pipeline for Time Series data with:

• The accelerometer sensor, FXOS8700
• One CNN model
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The components are available at this location:

--ML Application:   ${repository_location}\ml_state_monitor\ml_app
\v1\ML_State_Monitor.ipynb
--MCU Applications:
  ---${repository_location}\ml_state_monitor\mcu_app\boards\
${board}\ml_state_monitor_mpp\
  --- evkmimxrt1170_ml_state_monitor_cm7, lpcxpresso55s69_ml_state_monitor_cm33,
 frdmk66f_ml_state_monitor        

4.3.2  Application v2 with MPP (Multimedia Processing Pipeline)

The application v2 also consists of two components:

• ML_app – the host machine application used to generate the ML-model, developed in Jupyter Notebook with
Python kernel

• MCU_app – the embedded device application, developed in MCUXpresso IDE

The MCU application v2 is an enhanced version providing the eIQ MCU Multimedia Processing Pipeline (MPP)
library with exploratory support for Time Series data, supporting:

• The new accelerometer sensor, FXLS8974CF
• Four NN models with different performance metric targets

The advantage of the pipeline library comes in terms of integration ease and code reusability, providing a simple
API that integrates:

• Pipeline capabilities
• Accelerometer driver
• SD card driver
• Inference engines

The components are available at this location:

--ML Application: ${repository_location}\ml_state_monitor\ml_app
\v2\ML_State_Monitor.ipynb
--MCU Applications:
    ---${repository_location}\ml_state_monitor\mcu_app\boards\
${board}\ml_state_monitor_mpp\
    ---evkmimxrt1170_ml_state_monitor_mpp_cm7,
 lpcxpresso55s69_ml_state_monitor_mpp_cm33

4.4  Case Study for Application v1

4.4.1  Sensor data collection

The input signals, which are monitored, are the 3-axis accelerations read from a FOXS8700 sensor with the
specifications described in Table 1.

Sensor FXOS8700 (6-axis sensor)
3-axis 14-bit accelerometer
3-axis 16-bit magnetometer

Used Channels (Nch) Three channels (3-axis accelerometer)

Sampling Frequency (Fs) 200 Hz (5 ms)

Table 1. Sensor data specifications

AN13562 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 27 September 2023
6 / 35



NXP Semiconductors AN13562
Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs

Input-Output data Type/Size float 32/4 bytes (per each individual channel)

Sample size (s) Nch (each recorded sample includes all monitored channels)

Window Size (w) 128 samples (640 ms)

Overlap Ratio 50 % - 64 samples (320 ms)

Input Tensor Shape (w, 1, Nch) = (128, 1, 3)

Input Tensor Size 1.5 KB (w * Nch * 4 bytes)

Data Stream Format Interleaved

Training Data Collection
Input Tensors Count (Nt)
Duration

5.76 Ms
90 Kw
8 h

1.44 Ms/class
22 Kw/class
2 h/class

[MegaSample]
[KiloWindow]
[time]

Validation Data Collection
Input Tensors Count (Nt)
Duration

1.68 Ms
26 Kw
2 h 20 min

0.42 Ms/class
6 Kw/clas
35 min/class

[MegaSample]
[KiloWindow]
[time]

Table 1. Sensor data specifications...continued

To feed the neural network, the interleaved data stream format and the moving window method shown
in Figure 6 and Figure 7 are used to collect and reshape the dataset. For example, the first three tensors
processed by the neural network have the following format:

I 1: Ax1 Ay1 Az1 . . . Ax128 Ay128 Az128

I 2: Ax65 Ay65 Az65 . . . Ax192 Ay192 Az192

I 3: Ax129 Ay129 Az129 . . . Ax256 Ay256 Az256

Nch samples

input_vector =
window_size *  Nch

S1

x y z N

Interleaved samples:

N

Sw

Figure 6. Interleaved data stream format
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Figure 7. Model feeding using interleaved samples and moving window

Unlike image or audio, time series sensor data are often unique for the product setup, depending on sensor
type, sensor placement, location, surface, and so on. Therefore, we cannot use datasets already available, and
we must create (collect and annotate) a dataset relevant for this particular setup.

To collect the dataset, enable the embedded application to log the sensor data (on the SD card or over the
serial debugging interface) and provide the required configuration on the terminal.

/* Configure the action to be performed */
#define SENSOR_COLLECT_ACTION                 SENSOR_COLLECT_LOG_EXTERNALLY
            
Provide the required configuration on the terminal to start the recording:
Class to record (provide only the numeric index): >>> 0
Duration in minutes: >>> 5
SD card filename: >>> Vd1-clog.csv        

The embedded device communicates (log information, sensor data, input configuration) with the host machine
through the Debug Console Interface (UART over USB, 115,200 bps, 8 data bits, 1 stop bit, no parity, no flow
control). So, a serial terminal application (for example, PuTTY) must be used on the host machine to facilitate
the communication (inspect the output, save sensor data, provide configuration).
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The goal for any machine-learning model is to learn from examples (training data) in such a way that the model
is capable to generalize the learning to new unseen instances (validation/testing data). Therefore, we must
collect data covering as much variation as possible following a training and validation split for the dataset.

The setup must be configured for each class like in Figure 8 to capture all the states defined and the data need
to be collected and stored for every particular one. The main rule for collecting the data is to cover as much as
possible every corner case and not to use the same data for training and validation. Any pattern for duration
and how to switch between classes can be followed, depending on the use case and the analysis behind that.
For the presented case study every recording session collected a balanced dataset (data collected equally
improve the model performance by providing equal distribution and priority for each class) trying to cover as
much variation as possible.

Figure 8. Setup configured to record each class

One session of recording is presented in Figure 9 where the recording was started by collecting a validation
dataset for a short period (five minutes), followed by a dataset for training and validation collected for a longer
period (one hour + five minutes), and ending with a validation dataset collected again for a short period (five
minutes). For the demonstrated case study, it was easy to collect data for the classes OFF and ON while for the
Clogged class a thin piece of cardboard was used to block the airflow and for the Friction class a corner of the
cardboard was pressed on the blades to produce friction.
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Validation
Session1-vd1

Training
Session1-tr

Validation
Session1-vd2

Validation
Session1-vd3

OFF ON Clogged Friction

t

Valid. Training

Figure 9. Timeline for one session of data recording

Figure 10 shows a snapshot from a validation dataset collected in one recording session. The files capture
the state of the fan, the sample time, the X, Y, and Z axis of the accelerometer, the X, Y, and Z axis of the
magnetometer, and the temperature (T). Our model only uses the time and accelerometer data, but other
applications may find those other fields useful for their deep learning models.

Figure 10. Data collected in one session

4.4.2  Model development

The model development flow described in Application development workflow and Figure 3 is applied to the case
study by running on the host machine with Jupyter notebook provided for Application v1.

4.4.2.1  Importing the dataset

The files storing the sensor data in the /in_sensor_data/ directory are imported by executing the first
sections of the notebook. A summary of the imported dataset is returned by these sections.
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Figure 11. Dataset summary

4.4.2.2  Data analysis, processing, and shaping

Data analysis and preprocessing are optional, though these steps can increase the clarity of the analyzed data
(Figure 12 and Figure 13). To anylize the real-time data, plot the data collected at real time using the provided
real_time_plot function.

In terms of preprocessing, an increase in model performance has been observed after applying a fixed
normalization and reducing the dataset to a normalized range [-1, 1] as in Figure 14. In addition, the frequency
domain highlighted in Figure 13 produces quite differentiating spectrums, which could be extracted and fed into
a neural network. However, for this specific use case only time domain has been considered as it reduces the
work of developers and embedded processing overhead (that is, the raw data are directly fed into the network
without too much processing) and increases the model adaptability to various patterns.

Figure 12. Real-time data plot
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Figure 13. Data analysis in time and frequency domains

Figure 14. Dataset normalization
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The step of data reshaping is mandatory to feed the model to process the inputs. The dataset is split and
reshaped as a 2D-tensor for every channel, resulting in a reshaped final dataset with the following format:

dataset = (Nt, height, width, depth) = (Nt, window, 1, Nch) = (Nt, 128, 1, 3)
Nt – the total number of input tensors    

width
(1)

depth
(Nch)

Nt

conv
kernel

height
(window

size)

Figure 15. Shape of dataset and input tensor

4.4.2.3  Model definition, training, and evaluation

The architecture of the neural network relies on two stages: the first one is used for feature extraction and the
last computes the result. Between them, an auxiliary phase for filtering and adaptation is used.

C

B

A

Processing OutputFeature Extraction ClassificationFilteringInput Filtering

D

Figure 16. Neural network architecture

The network is implemented using the Keras framework, which is the Python deep learning API for TensorFlow.
The network structure and implementation are shown in Figure 16 and Figure 17. They rely on the following
components and layers.

• Conv – consists of filters and weights applied to the input that results in output activation.
• MaxPool – pooling layers are used to reduce the dimension of the input and the MaxPool filter selects the

sharpest features and decreases the model sensitivity to noise.
• Flatten – converts the input into a single long feature vector for the final classification phase.
• Dense – constructs the fully connected stage, which computes the classification results.
• Dropout and Regularization – reduce the overfitting effect and increase the model capability to perform well

on new unseen data by randomly dropping out units/diluting weights and by adding a penalty in the error
function.

• Adam optimizer – is an improved version of the stochastic gradient descent used to train the network and
update the weights iteratively based on training data.
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• Categorical cross-entropy – is the loss function used in training to compute the quantity that the network
seeks to minimize.

• Accuracy – is the metric used to evaluate the model performance.

Figure 17. Model structure and implementation

Once the network architecture is defined, the next step is to start the training process. Through training, the
network learns from the provided training dataset and automatically configures the model parameters. The
model parameters specify how to transform the input into the desired output. In addition, hyperparameters
can be tuned at this stage. Hyperparameters refer to the network structure, architecture, used optimizer,
learning rate, and so on, and directly influence the performance. There is no specific way to calculate the
hyperparameters and they must be manually tuned to find the optimal configuration for a specific use case. This
process is typically based on experimentation and reiterations when evaluating performance with a validation
dataset.

Training
Data

Validation
Data

NN
Training

Model

Hyper-
parameters

Evaluate using
Training data

Evaluate using
Validation data

Collected
Dataset

NN structure,
architecture,

learning rate, etc.

Model parameters
(weights, biases)

Fixed inputs

Evaluated outputs

Parameters tunning
(manually configured)

Volatile parameters:

Parameters tunning
(automatically estimated)

Figure 18. Model training and parameters tuning

The model can be evaluated on the validation dataset either by visually analyzing the accuracy and loss or by
using a confusion matrix like shown in Figure 19. To evaluate the training session, plot and analyze the history
of the progress over iterations, as shown in Figure 20.
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Figure 19. Model evaluation using confusion matrix

Figure 20. Training session evaluation

4.4.2.4  Model validation on host machine

The obtained accuracy for the built model goes up to 99 %, as shown in Figure 19 (99 % for training data
and 98 % for validation data). Besides running it on data previously recorded, you can evaluate the model
by running on a PC using new unseen data by reading and processing sensor data provided in real time by
the embedded device. To run this validation phase, connect the board to a host machine and configure to log
externally sensor data via the console.
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Figure 21. Model validation on host

4.4.2.5  Model porting for embedded device

The trained model can be converted to run on the embedded board by using the provided save_model
function. This function saves three flavors of the model: full Keras model (model.h5), the converted TFLite
model (model.tflite), and the TFLite-quantized model (model_quant.tflite). For quantization a hybrid
posttraining approach is to maintain compatibility with applications by keeping the full size of inputs/outputs
tensors (float32) while quantizing and decreasing to int8 only the parameters between layers.

TensorFlow Lite micro inference engine is used to run on the embedded board the model exported in tflite
format while for DeepViewRT and Glow some additional steps must be executed to convert properly the model
in the specific format. These steps rely on the eIQ toolkit (eIQ Portal, eIQ Model Tool, eIQ Glow). For more
information, see Section 2.

The model tool from the eIQ portal software suite must be used for conversion in the RTM format
(DeepViewRT), as shown in Figure 22.

Figure 22. Model tool conversion for DeepViewRT

For glow format, the model-compiler.exe with the following parameters must be executed in the command
line to generate the bundle as shown in Figure 23 (the glow_model_fan_clsf.tflite is the
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model_fan_clsf.tflite model copied and renamed for file distinction). Depending on the embedded
device target, modify the -target and -mcpu parameters as required.

model-compiler.exe -model=models\model_fan_clsf\glow_model_fan_clsf.tflite -
emit-bundle=models\model_fan_clsf\bundle -backend=CPU -target=arm -mcpu=cortex-
m7 -float-abi=hard -use-cmsis

Figure 23. Model conversion for Glow

4.4.3  Model deployment and evaluation on the embedded device

Once the models were generated, you can use the provided mcu_app application and the MCUXpressoIDE to
deploy, run, and evaluate them on the embedded board.

The source code structure is highlighted in Figure 24 and includes:

• mcu_app/doc/readme.txt: short documentation for the application provided.
Note:  Refer to this document for guidelines on hardware requirements, board settings, and running the
demo.

• mcu_app/board/board.h: contains settings related to board configuration.
• mcu_app/board/frdm_stbc_agm01_shield.h: contains settings related to the used sensors.

Note:  Enable the sensor shield if the optional sensor toolbox (FRMD-STBC-AGM01) is used.
• mcu_app/source/inf-eng: contains the APIs used to run the inference engines.
• mcu_app/source/models: contains the models ported for every specific format plus validation data to be

used for testing.
Note:  The models ported by following the guidelines from Section 4.4.2.5 must be stored in this directory.

• mcu_app/source/models/model_selection.h: must be configured and selects between quantized and
not quantized versions and how to load the model (from Flash or from RAM).
Note:  If the glow quantized version is selected to be used the name of the model must also be configured in
the project settings by following this path: right-click the Project > Properties > C/C++ Build > Settings >
Tool Settings > MCU C++ Linker > Miscellaneous > Other Objects.

• mcu_app/source/models/validation_data/: contains the prerecorded data for offline validation.
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• mcu_app/source/sensor/sensor_collect.c: contains the main thread.
• mcu_app/source/sensor/sensor_collect.h: must be configured and selects the application runtime

behavior.
– Log externally the sensor data.

/* Configure the action to be performed */
#define SENSOR_COLLECT_ACTION                   SENSOR_COLLECT_LOG_EXT

#if SENSOR_COLLECT_ACTION == SENSOR_COLLECT_LOG_EXT
#define SENSOR_COLLECT_LOG_EXT_SDCARD           1  // Redirect the log to SD
 card

– Run the selected inference engine and compute predictions either on real time data, or on prerecorded
validation data (the SENSOR_FEED_VALIDATION_DATA flag toggles between real time or offline validation).

/* Configure the action to be performed */
#define SENSOR_COLLECT_ACTION                   SENSOR_COLLECT_RUN_INFERENCE
              
#if SENSOR_COLLECT_ACTION == SENSOR_COLLECT_RUN_INFERENCE
#define SENSOR_COLLECT_RUN_INFENG              
 SENSOR_COLLECT_INFENG_TENSORFLOW
#define SENSOR_FEED_VALIDATION_DATA             1   // Feed the model with
 data recorded previously for validation
#define SENSOR_RAW_DATA_NORMALIZE               1   // Normalize the raw data
#define SENSOR_EVALUATE_MODEL                   1   // Evaluate the model
 performance by computing the accuracy
#define SENSOR_COLLECT_INFENG_VERBOSE_EN        0   // Enable verbosity

– When offline validation is configured the prerecorded data from the validation_data/ directory is used
for evaluation. Depending on which class is evaluated, the pointer which references the validation data must
be configured in the sensor_collect.c file.

/* Replace with the buffer that contains the data recorded
 * for the specific class that will be evaluated
 * (i.e., vdset_3_vd3_clog, vdset_3_vd3_friction,
 *  vdset_3_vd3_off, vdset_3_vd3_on) */
static const float *vdset_ptr = &vdset_3_vd3_clog[0][0];            

APIs for
Inference Engines

Main entry point

Configure Application
behaviour

Generated models:

DeepViewRT models

Glow models

Tensorflow models

Recorded data for Validation
Model selection
(no quant., quant., mem.)

APIs and configuration
for SD card

Figure 24. Source code structure
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After the settings have been configured, the application can be programmed on the target board and then
launched by pressing the reset button or by executing the debugger in the IDE. After the board is flashed, the
terminal prints "Starting Application..." and the application runs. Example output:

Starting Application...
MainTask started
SENSOR_Collect_Task started
Model loaded to SDRAM...

Model Evaluation:
Class to evaluate (provide only the numeric index):
( 0:FAN-CLOG 1:FAN-FRICTION 2:FAN-OFF 3:FAN-ON )
        >>> 0
Pool size (total number of predictions to compute):
        >>> 936

Inference 0?0 | t 825 us | count: 732/936/936 | FAN-CLOG
Prediction Accuracy for class FAN-CLOG 78.21%

To compute the accuracy, divide the number of correct predictions to the total number of predictions. When the
model is evaluated on the board, two parameters are provided.

1. Target class: specifies which class is evaluated and for which class the accuracy is computed (that is, 0
for Fan-Clog, 1 for Fan-Friction, 2 for Fan-OFF, 3 for Fan-ON).

2. Pool size: the total number of predictions to be computed. In the above snapshot, the Clog state was
evaluated from a pool of 936 input tensors. The provided pool size value is actually the size of the last
validation dataset recorded in session 3 (vdset_3_vd3_clog.h) and exported for offline validation on the
board:

Pool size = 936 (60000/64 – 1)
Number of samples in the dataset = 60000 (5minutes of recording at 200Hz)
Moving Window size = 64 samples
Remainder = 1

Also, the results obtained when evaluating offline the prerecorded data on the board must match the
results obtained by running the script on the host machine evaluating the same batch of data, as shown in
Figure 25 and Figure 26.
Note:  A slight deviation in the computed accuracy (up to 0.3 %) can be observed when running predictions
with the float models versus quantized models. This behavior is expected as the quantization is a lossy
process that converts the model to smaller precision data.

Figure 25. Model evaluation on the board using prerecorded validation data
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Figure 26. Model evaluation on the host machine using prerecorded validation data

Table 2 presents the results obtained by running and evaluating the models on the i.MXRT1170-EVK (Cortex-
M7 core). Figure 27 and Figure 28 present through charts the benchmark results.

The Inference time is the average duration to process an input tensor and represents how fast the embedded
board computes the predictions and classifies one single state of the device. To evaluate this duration, load the
model from RAM or from flash memory with the processing core configured to run at a higher frequency of 996
MHz or at a lower frequency of 156 MHz.

The memory usage is presented through the Model size and Code size for every inference engine.

The model size consists of constant parameters, which reside in flash memory and can also be loaded from the
RAM memory for faster inference time, and mutable weights, which reside in RAM.

Some noticeable differences can be observed in the inference engines memory footprint, because the model is
small, but this ratio would be less relevant for larger models.
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TFLite
(no quant)

TFLite
(quant)

DeepViewRT[1]

(no quant)
DeepViewRT[1]

(quant)
Glow
(no quant)

Glow
(quant)

InferenceTime (ms)

RAM 0.74 0.48 1.16 1.14 0.35 0.17
@996 MHz

Flash 1.46 0.55 1.77 1.31 0.98 0.23

RAM 4.89 1.92 3.50 4.32 2.19 1.08
@156 MHz

Flash 5.31 1.93 3.80 4.44 2.42 1.09

Model size (KB)

Flash/RAM (const) 43.5 15.4 44.3 15.4 40.5 10.6

RAM (var) 9.4 4.5 11.3 6.3 9.6 3.7

Code size (KB):

Flash 56.3 60.9 109.2 109.2 10.9 10.4

Table 2. Model evaluation on the embedded board

[1] The evaluated software version for the DeepViewRT inference engine is released by the end of Q1-2022.
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Figure 27. Model performance - inference time
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Figure 28. Memory usage

Table 3 and Figure 29 present the inference time evaluated by running the model on multiple embedded devices
with the processing cores configured to run at 150 MHz.

InferenceTime (ms)
@150 MHz

TFLite
(no quant)

TFLite
(quant)

Glow
(no quant)

Glow
(quant)

MIMXRT1170-EVK
(Arm Cortex-M7)

4.89 1.92 2.19 1.08

FRDM-K66F
(Arm Cortex-M4)

8.87 4.18 4.24 5.47[1]

LPC55S69-EVK
(Arm Cortex-M33)

9.95 5.77 4.16 3.88

Table 3. Inference-time evaluated on multiple embedded devices

[1] Expected higher inference time for glow quantized model versus float model because the Glow model-compiler does not support the CMSIS-NN
acceleration for Arm Cortex-M4 at this point.
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Figure 29. Inference-time evaluated on multiple embedded devices

4.5  Case Study for Application v2 with MPP
The case study for Application v2 with MPP is derived from Application v1, following the same steps with the
differences listed below.

4.5.1  Sensor data collection

The sensor in Table 1 is replaced with FXLS8974CF, as listed below:

Sensor(s) FXLS8974CF (3 axis sensor)
3-axis 12-bit accelerometer

To collect the dataset, enable the embedded application to log the sensor data on the SD card and provide the
required configuration on the terminal.

/* SELECT data usage: 0 - run ML inference; 1 - run SD log data capturing */
#define SENSOR_COLLECT_LOG_EXT 1

Provide the required configuration on the terminal to start the recording:
Class to record (provide only the numeric index): >>> 0
Duration in minutes: >>> 5
SD card filename: >>> Vd1-clog.csv

4.5.2  Model development

The model development flow described in Application development workflow and Figure 3 is applied to the case
study by running on the host machine with Jupyter notebook provided for Application v2 with MPP.

The following aspects are similar to Application v1 and detailed in Section 4.4.2.

• Importing the dataset
• Data analysis, processing and shaping
• Model validation on host machine
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• Model porting for embedded device

4.5.2.1  Model definition, training, and evaluation

Application v2 provides four different model architectures: CNN, Light CNN, MLP, and Light ResNet with
different performance for the following metrics: accuracy, inference latency, and memory usage.

The application developers trade off between higher accuracy, lower inference latency, and lower memory
usage, depending on the application needs and the resources available. The most balanced model from the
four is the Light CNN, which provides good results for latency and memory usage for a slight decrease in
accuracy. The application developers can also use the models as seeds for future architectures.

Each model was trained on the training data and evaluated using the validation data. After training, each model
was converted to TensorFlow Lite format using the TensorFlow Lite converter. Then, the TensorFlow Lite has
been quantized to fit in low-memory devices.

4.5.2.2  CNN

The Convolutional Neural Network (CNN) overview and the CNN model architecture is identical with the one
provided in Application v1.

Figure 30. CNN model structure and implementation

4.5.2.3  LightCNN

Lighter CNN architecture is a simplified version of the CNN architecture that uses one Conv2D and two Dense
layers, occupying less memory and having better latency with a slight decrease in accuracy.
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Figure 31. Light CNN model structure and implementation

4.5.2.4  MLP

Multi Layer Perceptron (MLP) is a fully connected type of Artificial Neural Network (ANN) that has input and
output layers, and one or more hidden layers with many neurons connected. In this type of architecture, each
layer feeds the next one with the result of their computation. This goes all the way through the hidden layers to
the output layer. In this project, we used an MLP model of one hidden layer with 16 units. Figure 32 shows the
MLP architecture.

Figure 32. MLP architecture

The MLP architecture provided with the Application v2 is the smallest and fastest version of the four options with
the downside of a lower accuracy.

AN13562 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 27 September 2023
25 / 35



NXP Semiconductors AN13562
Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs

Figure 33. MLP model structure and implementation

4.5.2.5  Light ResNet

Residual Network (ResNet) is a CNN architecture used mostly for computer vision applications. It has been
shown that the classical CNN model can result in the vanishing/exploding gradient issue when the number of
layers grow. The vanishing gradient phenomenon happens when the gradient is so small that the weight values
of the model remain unchanged during their update. ResNet architecture is designed to support hundreds or
thousands of convolutional layers without vanishing gradient issue. This new architecture introduces a concept
called Residual Blocks. In this architecture, the activations of a layer are connected to further layers by skipping
some layers in between. This forms a residual block (see Figure 34). To make the resnets model, stack these
residual blocks.

Figure 34. Residual block of Restnet architecture

The Light ResNet architecture provided with the Application v2 is a small version with one residual block that
provides high accuracy with a downside on memory usage and inference latency:
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Figure 35. Light ResNet model structure and implementation

4.5.3  Model deployment and evaluation on the embedded device

Once the models were generated, you can use the provided mcu_app application and the MCUXpressoIDE to
deploy, run, and evaluate them on the embedded board.

The source code structure is highlighted in Figure 36 and includes:

• doc/readme.md: short documentation for the application provided.
Note:  Refer to this document or the laboratory guide for guidelines on hardware requirements, board
settings, and running the demo.

• source/main.c: contains the main source of the application that uses the MPP library with exploratory Time
Series support.

MPP API
=======

The MPP (Multimedia Processing Pipleine) library with exploratory time series
 support is built on top of MPP eIQ release https://github.com/nxp-mcuxpresso/
mcux-sdk-middleware-eiq/tree/MCUX_2.13.0/mpp

The exploratory library located in eiq/mpp folder extends the pipeline API with
 the following functions documented in mpp_api.h:
    int mpp_api_init(uint32_t input_dequeue_frequency)
    int mpp_accelerometer_add(...)
    int mpp_static_accelerometer_add(...)
    int mpp_sd_add(...)

The library provides source code for drivers in eiq/mpp/hal folder.

• sensors/: contains the low-level driver for fxls8974 sensor.
• ource/sdcard/: contains a low-level driver for data capturing on SD card.
• source/models/glow and source/models/tensorflow: contain the C source code of the models.
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• source/inf-eng/glow and source/models/tensorflow: contain the integration of the models.
• mcu_app/source/app_config.h: must be configured to select the application runtime behavior.

– The application supports two configurations of the MPP pipeline:

Fxls8974 accelerometer (with real time or static data) and
inference components to detect fan system state using Neural Networks

+-------------------------+      +---------------+
|                         |      |               |
|                         |      |               |
|      Accelerometer      | -->  |   Inference   | 
| Fxls8974 or static data |      |               |
|                         |      |               |
+-------------------------+      +---------------+

Fxls8974 accelerometer and SD card component to collect data for training
 Neural Networks models

+-------------------------+      +---------------+
|                         |      |               |
|                         |      |               |
|      Accelerometer      | -->  |    SD card    | 
| Fxls8974 or static data |      |               |
|                         |      |               |
+-------------------------+      +---------------+

– Run the selected inference engine and compute predictions either on real time data, or on prerecorded
validation data (the SOURCE_STATIC_ACCEL_DATA flag toggles between real time or offline validation).

/* SELECT data source: 0 - live accelerometer sensor data; 1 - static
 validation data */
#define SOURCE_STATIC_ACCEL_DATA 0

/* SELECT data usage: 0 - run ML inference; 1 - run SD log data capturing */
#define SENSOR_COLLECT_LOG_EXT 0

/* Available ML inference engines */
#define INFERENCE_ENGINE_TFLM 1
#define INFERENCE_ENGINE_GLOW 0

/* SELECT the ML inference engine */
#define INFERENCE_ENGINE INFERENCE_ENGINE_GLOW

– Select the desired NN model and quantization for inference.

/* Available ML NN models for inference */
#define MODEL_CNN       1
#define MODEL_LCNN      2
#define MODEL_MLP       3
#define MODEL_LRESNET   4

/* SELECT ML NN model for inference */
#define SELECTED_MODEL MODEL_LCNN

/* SELECT quantization: 0 - no quantization; 1 - use quantized models */
#define MODEL_QUANTIZED   1
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– When offline static validation is configured the prerecorded data from the source/models/validation_data/
directory is used for evaluation. Configure the desired dataset class for validation.

/* SELECT data source: 0 - live accelerometer sensor data; 1 - static
 validation data */
#define SOURCE_STATIC_ACCEL_DATA 1

/* Available pre-recorded validation datasets */
#define VDSET_CLOG      0
#define VDSET_FRICTION  1
#define VDSET_ON        2
#define VDSET_OFF       3

#if (SOURCE_STATIC_ACCEL_DATA == 1)
/* SELECT the static dataset for validation */
#define STATIC_ACCEL_VDSET VDSET_ON
#endif

– Collect sensor data on SD card.

/* SELECT data usage: 0 - run ML inference; 1 - run SD log data capturing */
#define SENSOR_COLLECT_LOG_EXT 1

– To update the dataset after data collection on SD card, run the Jupiter Notebook to generate the
corresponding source files and update them in the source/models/validation_data/ directory.

– When updating the dataset, update the mean and standard deviation of the dataset provided by the Jupiter
notebook in source/models/model_configuration.c.

/* Mean and standard deviation of the dataset used for NN models training */
float model_mean[] = {-10.423518161780331, 0.3063457550753402,
 1044.4877729336488};
float model_std[] = {262.3036980857252, 239.52283182578253,
 268.3708749240864};
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Figure 36. Source code structure

Below is the comparative evaluation of the four quantized models running on LPC55S69 and i.MX RT 1170
using Glow and TensorFlow inference engines.

• CNN provides the best accuracy with higher latency and memory usage.
• Light CNN is the most balanced model providing good results for latency and memory usage for a slight

decrease in accuracy. This is the recommended option if there are no special needs for the application.
• MLP is the smallest and fastest version of the four options with the downside of a lower accuracy.
• Light ResNet offers higher accuracy with a downside in memory usage and latency.
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LPC55S69 - Glow

Model - Metric Accuracy (%) Duration (ms) Total Memory
(KB)

Model RAM
(KB)

Model Flush
(KB)

Code Flash
(KB)

CNN Quantized 98.98 % 4 25.52 3.71 10.62 11.19

Light CNN
Quantized

98.07 % 2 17.05 3.71 2.31 11.03

MLP Quantized 94.69 % 0 16.64 2.03 10.75 3.86

Light ResNet
Quantized

98.93 % 10 31.20 7.78 6.25 17.17

LPC55S69 - TF

Model - Metric Accuracy (%) Duration (ms) Total Memory
(KB)

Model RAM
(KB)

Model Flush
(KB)

Code Flash
(KB)

CNN Quantized 98.98 % 6 77.17 4.15 14.92 58.1

Light CNN
Quantized

98.07 % 3 67.14 3.62 5.42 58.1

MLP Quantized 94.69 % 0 52.69 3.17 8.31 41.21

Light ResNet
Quantized

98.93 % 39 106.35 9.51 13.12 83.72

RT1170 - TF

Model - Metric Accuracy (%) Duration (ms) Total Memory
(KB)

Model RAM
(KB)

Model Flush
(KB)

Code Flash
(KB)

CNN Quantized 98.98 % 0.35 76.60 4.19 14.92 57.49

Light CNN
Quantized

98.07 % 0.33 66.53 3.66 5.38 57.49

MLP Quantized 94.69 % 0.15 56.62 3.21 8.28 45.13

Light ResNet
Quantized

98.93 % 2.01 100.27 9.55 13.03 77.69

Table 4. Models evaluation on the embedded boards

5   Conclusion

This application note provides the guidelines that can be followed to build and run a Smart Sensing Appliance
on an MCU, relying on Deep Learning to solve a specific problem. For that purpose, this document exemplifies
through a real use case the steps required to produce and assemble a dataset, define the architecture of
a neural network, train, and deploy a model on an embedded board by using the NXP SDK and the eIQ
technology.

This document also shows which metrics to use and how to evaluate the behavior of a neural network model at
runtime on an embedded board, as well as benchmarks and performance results.
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6   Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7   Revision history

Table 5 summarizes the revisions to this document.

Revision number Release date Description

2 27 September 2023 • Updated Section 4.1
• Updated Section 4.2
• Updated Section 4.3
• Updated Section 4.4
• Updated Section 4.5
• Documented the enhanced version providing the eIQ MCU

Multimedia Processing Pipeline (MPP) library with exploratory
support for Time Series data, new FXLS8974CF accelerometer
sensor and four new NN models with different performance
metrics

1 25 April 2022 Added inference-time benchmarks for MIMXRT1170-EVK (CM7),
FRDM-K66F (CM4), and LPC55S69-EVK (CM33)

0 03 February 2022 Initial release

Table 5. Revision history
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Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

8.2  Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
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punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
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accordance with the Terms and conditions of commercial sale of NXP
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to result in personal injury, death or severe property or environmental
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inclusion and/or use of NXP Semiconductors products in such equipment or
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risk.

Applications — Applications that are described herein for any of these
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representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
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applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
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whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
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provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

8.3  Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN13562 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 27 September 2023
33 / 35

mailto:PSIRT@nxp.com


NXP Semiconductors AN13562
Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

EdgeVerse — is a trademark of NXP B.V.
eIQ — is a trademark of NXP B.V.
i.MX — is a trademark of NXP B.V.
TensorFlow, the TensorFlow logo and any related marks — are
trademarks of Google Inc.

AN13562 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 2 — 27 September 2023
34 / 35



NXP Semiconductors AN13562
Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs

Contents
1 Overview .............................................................. 2
2 Introduction of eIQ and runtime inference

engines .................................................................2
2.1 DeepViewRT ......................................................3
2.2 TensorFlow Lite for Microcontrollers .................. 3
2.3 Glow ...................................................................3
3 Application development workflow ................... 3
4 Going through a real use case .......................... 4
4.1 Prerequisite ........................................................4
4.2 Use case ............................................................5
4.3 Applications ........................................................5
4.3.1 Application v1 .................................................... 5
4.3.2 Application v2 with MPP (Multimedia

Processing Pipeline) ..........................................6
4.4 Case Study for Application v1 ........................... 6
4.4.1 Sensor data collection ....................................... 6
4.4.2 Model development ......................................... 10
4.4.2.1 Importing the dataset .......................................10
4.4.2.2 Data analysis, processing, and shaping .......... 11
4.4.2.3 Model definition, training, and evaluation .........13
4.4.2.4 Model validation on host machine ................... 15
4.4.2.5 Model porting for embedded device ................ 16
4.4.3 Model deployment and evaluation on the

embedded device ............................................ 17
4.5 Case Study for Application v2 with MPP ..........23
4.5.1 Sensor data collection ..................................... 23
4.5.2 Model development ......................................... 23
4.5.2.1 Model definition, training, and evaluation .........24
4.5.2.2 CNN ................................................................. 24
4.5.2.3 LightCNN ......................................................... 24
4.5.2.4 MLP ..................................................................25
4.5.2.5 Light ResNet ....................................................26
4.5.3 Model deployment and evaluation on the

embedded device ............................................ 27
5 Conclusion .........................................................31
6 Note about the source code in the

document ........................................................... 32
7 Revision history ................................................ 32
8 Legal information ..............................................33

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 27 September 2023
Document identifier: AN13562


	1  Overview
	2  Introduction of eIQ and runtime inference engines
	2.1  DeepViewRT
	2.2  TensorFlow Lite for Microcontrollers
	2.3  Glow

	3  Application development workflow
	4  Going through a real use case
	4.1  Prerequisite
	4.2  Use case
	4.3  Applications
	4.3.1  Application v1
	4.3.2  Application v2 with MPP (Multimedia Processing Pipeline)

	4.4  Case Study for Application v1
	4.4.1  Sensor data collection
	4.4.2  Model development
	4.4.2.1  Importing the dataset
	4.4.2.2  Data analysis, processing, and shaping
	4.4.2.3  Model definition, training, and evaluation
	4.4.2.4  Model validation on host machine
	4.4.2.5  Model porting for embedded device

	4.4.3  Model deployment and evaluation on the embedded device

	4.5  Case Study for Application v2 with MPP
	4.5.1  Sensor data collection
	4.5.2  Model development
	4.5.2.1  Model definition, training, and evaluation
	4.5.2.2  CNN
	4.5.2.3  LightCNN
	4.5.2.4  MLP
	4.5.2.5  Light ResNet

	4.5.3  Model deployment and evaluation on the embedded device


	5  Conclusion
	6  Note about the source code in the document
	7  Revision history
	8  Legal information
	Contents

