
1 Introduction
I2C communication is popular in most MCU applications. i.MXRT series MCU
provides strong features in LPI2C module. The clock stretching function is
useful in the application. RT1010 provides four types of clock stretching
functions. This application note introduces how to use the function and key
points when using the function.

The hardware is based on RT1010 EVK (Rev. C) and the software is based on SDK2.10.0.

The path of this demo is:

SDK_2_10_0_EVK-MIMXRT1010\boards\evkmimxrt1010\driver_examples\lpi2c\interrupt_b2b_transfer

2 LPI2C clock stretching overview
The clock stretching function pauses the data transmission by holding the SCL line to LOW level. The transmission cannot
continue until the line is released to HIGH level again.

For byte level, the device is able to receive data bytes with a fast rate. However, it takes more time to store a received byte or
prepare another byte to be transmitted. After a byte is received and acknowledged, the slave device (described as Slave below)
holds the SCL line to the LOW state. It forces the master device (described as Master below) into a Wait state until Slave is ready
for the next byte transmission in the handshake procedure.

For the bit level, the device, such as a microcontroller with or without limited hardware for the I2C-bus, can slow down the bus clock
by extending the LOW period. The speed of any Master is adapted to its internal operating rate.

Before using the clock stretching function, read the manual to check whether the device supports the clock
stretching function.

• Not all I2C Slaves support the clock stretching function. For example, some sensors and memory devices do
not support the function.

• Not all I2C Masters support the clock stretching function. For example, the device, with I2C simulated by GPIO
peripheral or an I2C peripheral in FPGA, does not support the function.

 NOTE

3 LPI2C clock stretching in RT1010
i.MX RT1010 Processor Reference Manual (document IMXRT1010RM) lists four types of clock stretching function, as shown in
Figure 1.

Contents

1 Introduction......................................1
2 LPI2C clock stretching overview..... 1
3 LPI2C clock stretching in RT1010...1
4 Key Point...4
5 Revision history...............................5

AN13472
LPI2C Clock Stretching in RT1010
Rev. 0 — 3 December 2021 Application Note

https://www.nxp.com/webapp/Download?colCode=IMXRT1010RM

Figure 1. Clock stretching function supported by RT1010

In my view, the clock stretching function can be described as below:

 Using Following the Nth clock pulse instead of During the Nth clock pulse.

3.1 Enabling clock stretching after receiving address
When Slave receives an address from Master and AVF bit is set, Salve holds the SCL to the LOW state and starts the clock
stretching process. Once AVF bit is cleared, the clock stretching process ends and Master controls the SCL state. Figure 2 shows
the waveform that Slave receives an address and clears the AVF bit after 500 μs delay.

Figure 2. Enabling clock stretching after receiving address

As shown in Figure 2, the time interval, from the 9th pulse of address to the 1st pulse of data information, is 491 μs. The result is
approximate to 500 μs because the delay API does not use a timer.

3.2 Enabling clock stretching before sending data
When Slave receives the address and the read command, the TDF bit is set. At the same time, the clock stretching process starts
and Slave holds the SCL. During the process, Slave prepares the sent data according to the information from Master. Once the
data is ready, the TDF bit is cleared and the clock stretching process ends. Master controls SCL again. For this time, the delay
before clearing TDF bit is 800 μs. Figure 3 shows the waveform.

Figure 3. Enabling clock stretching before sending data

3.3 Enabling clock stretching before receiving data
When Slave receives data, the RDF bit is set. Slave holds the SCL to the LOW state. After clearing the TDF bit, Slave releases
the SCL and Master controls the SCL. This time, there is a 1000 μs delay. Figure 4 shows the waveform.

NXP Semiconductors
LPI2C clock stretching in RT1010

LPI2C Clock Stretching in RT1010, Rev. 0, 3 December 2021
Application Note 2 / 6

Figure 4. Enabling clock stretching before receiving data

3.4 Enabling clock stretching before sending ACK/NACK
Slave holds the SCL to the LOW state after receiving the 8th clock pulse. The clock stretching function is enabled and users can
send the ACK/NACK. To send ACK or NACK to Master, write the bit0 of STAR register to 0 or 1. Before writing 0 to STAR, add a
500 μs delay. Figure 5 shows the clock stretching and delay after Slave receives the address information. To form the waveform,
there is a 500 ns delay between the 8th clock and 9th clock.

Figure 5. Enabling clock stretching before sending ACK/NACK

Figure 6 shows the ACK delay after Slave receives the data from Master.

Figure 6. Enabling clock stretching before sending ACK/NACK

3.5 Enabling clock stretching
To enable the clock stretching function, configure the parameters as highlighted in Figure 7.

Figure 7. Enabling clock stretching

NXP Semiconductors
LPI2C clock stretching in RT1010

LPI2C Clock Stretching in RT1010, Rev. 0, 3 December 2021
Application Note 3 / 6

4 Key Point
When enabling the clock stretching function, take care of the setup time and hold time. Parameters differ with speed. Figure 8
shows the AC timing parameters from I2C spec.

Figure 8. AC timing parameters from I2C spec

For RT1010, in the SCFGR2 register:

• CLKHOLD is used to configure the setup time.

• DATAVD is used to configure the hold time.

Figure 9. CLKHOLD and DATAVD

To set the setup time and hold time, use the following formula:

 t = (CLKHOLD + 3) * Tclk

The real setup time depends on two parameters: CLKHOLD value and Tclk. Tclk means the period of I2C functional clock. As shown
in Figure 8, the hold time is 0 for an I2C device.

NXP Semiconductors
Key Point

LPI2C Clock Stretching in RT1010, Rev. 0, 3 December 2021
Application Note 4 / 6

5 Revision history

Revision number Date Substantive changes

0 3 December 2021 Initial release

NXP Semiconductors
Revision history

LPI2C Clock Stretching in RT1010, Rev. 0, 3 December 2021
Application Note 5 / 6

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at
the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 December 2021
Document identifier: AN13472

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 LPI2C clock stretching overview
	3 LPI2C clock stretching in RT1010
	3.1 Enabling clock stretching after receiving address
	3.2 Enabling clock stretching before sending data
	3.3 Enabling clock stretching before receiving data
	3.4 Enabling clock stretching before sending ACK/NACK
	3.5 Enabling clock stretching

	4 Key Point
	5 Revision history

