
1 Introduction
This application note illustrates the FlexIO emulation on Serial Peripheral
Interface (SPI) slave device which works in continuous mode with dynamic
frame size on "i.MX RT1010".

For this application note, the hardware board is "RT1010 EVK RevC".
The software is SDK 2.9.1 and the demo code is developed based on
edma_lpspi_transfer slave project and the path is

boards\evkmimxrt1010\driver_examples\flexio\spi\edma_lpspi_transfer\slave.

FlexIO is an on-chip peripheral available on NXP i.MX RT series. It is a highly configurable module which is capable of emulating
a wide range of communication protocols, such as UART, I2C, SPI, and I2S.

2 FlexIO overview
The FlexIO module of the "i.MX RT1010" provide the following key features:

• Array of 32-bit shift registers with transmit, receive, and data match modes.

• Double buffered shifter operation for continuous data transfer.

• Automatic start/stop bit generation.

• Interrupt, Direct Memory Access (DMA), or polled transmit/receive operation.

• Programmable baud rates independent of bus clock frequency, with support for asynchronous operation during stop
modes.

• Highly flexible 16-bit timers with support for a variety of internal or external trigger, reset, with enable and disable
conditions.

• Programmable logic mode for integrating external digital logic functions on-chip or combining pin/shifter/timer functions to
generate complex outputs.

• Programmable state machine for offloading basic system control functions from CPU with support for up to eight states,
eight outputs, and three selectable inputs per state.

Figure 1 gives a high-level overview of FlexIO timers and shifters configuration.

Contents

1 Introduction......................................1
2 FlexIO overview...............................1
3 Emulating a SPI slave device in

continuous mode.............................2
4 Example code..................................8
5 Revision history...............................9

AN13358
FlexIO Emulation on SPI Slave Device which Works in Continuous
Mode with Dynamic Frame Size
Rev. 0 — 23 August 2021 Application Note

TIMER0

External triggers

Timer
selection

TIMERi

FXIO_Dn
out/outen

FXIO_Dn
in

SHIFTERi

SHIFTBUFi

SHIFTBUF0

Input
selection

Output
selection

31 0

31 0

SHIFTER0

Figure 1. FlexIO block diagram

From the FLEXIO_PARAM register, users can read the amount of these resources, for example, shifter, timer, pin, and trigger. For
instance, there are eight shifters, eight timers, 32-pins, and two external triggers in "i.MX RT1010" (In this device, FlexIO only
has 27-pins).

3 Emulating a SPI slave device in continuous mode

Read the Emulating SPI with the FlexIO on i.MX RT Series MCU (document AN12780) before proceeding.
 NOTE

3.1 SPI slave configuration in discontinuous mode
To emulate an SPI slave device, the following resources are needed:

• One Timer - for the load/store/shift control of the two shifters.

• Two Shifters - one for data transmitter and the other for receiver.

• Four Pins – used as SPI_CS, SPI_SCK, SPI_MOSI, and SPI_MISO.

Figure 2 shows the FlexIO SPI slave configuration diagram.

NXP Semiconductors
Emulating a SPI slave device in continuous mode

FlexIO Emulation on SPI Slave Device which Works in Continuous Mode with Dynamic Frame Size, Rev. 0, 23 August 2021
Application Note 2 / 10

https://www.nxp.com/doc/AN12780

31

Buffer

MISO
pin

MOSI
pin

Shifter
output

writing buffer using
polling/interrupt/DMA method

30 29 28 3 2 1 0

31

Shifter

30 29 28 3 2 1 0

31

Buffer

Load and shift control

Shifter
input

reading buffer using
polling/interrupt/DMA method

30 29 28 3 2 1 0

31

Shifter

Timer

Shift and store control

SCK
pin

CS
pin

Decrement source

Trigger, enablement and disablement

30 29 28 3 2 1 0

Figure 2. FlexIO SPI slave block diagram

In slave mode, timer 0 is used by the SPI slave to acquire SPI_SCK signal on FlexIO_D26 pin from master to load/store/shift
control of the two shifters. The SPI_SCK and SPI_CS signal are configured as inputs and driven by the SPI bus master. Select pin
FlexIO_D0 of SPI_CS as the trigger input to timer 0. Shifter 0 is used as SPI slave transmitter on pin FlexIO_D21, shifter 1 is used
as SPI slave receiver on pin FlexIO_D22.

3.2 SPI slave configuration in continuous mode
To support continuous mode, the timer must configure as disabled on trigger raising edge of the Chip Select (CS) signal. Besides
this, the timer must be enabled all the time during a frame transfer.

The "frame" may be one byte or several bytes.

 NOTE

However, the timer cannot be disabled at the end of a frame, that means an additional load event occurs after the last bit of the
last word in a frame. See Figure 3, the bit marked with green color. The reason is that, the shifter which in transmit mode, it loads
the data from the SHIFBUF on the expiration of the timer. That means an invalid data goes on the next frame.

NXP Semiconductors
Emulating a SPI slave device in continuous mode

FlexIO Emulation on SPI Slave Device which Works in Continuous Mode with Dynamic Frame Size, Rev. 0, 23 August 2021
Application Note 3 / 10

CLK Polarity = 0

CHPA = 0

MISO/MOSI

CHPA = 1

Sample data
Data transition

MISO/MOSI

CLK Polarity = 1

CS

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 3. FlexIO SPI slave block diagram

For RX shifter, it triggers an additional store event that rises the CS pin. The CS pin rise up disables the timer. Therefore, the RX
shifter stores the content to SHIFBUF and triggers a new DMA loop. Invalid data is stored to the buffer and this invalid data should
be 0.

To avoid these problems, reset or flush the shifter can be a choice. Because FlexIO does not have a register bit to reset/flush a
shifter, the following configuration can be used.

• TX shifter: Disable the shifter and enable it with TX mode, the TX shifter is flushed.

• RX shifter: Read it as buffer register then the shifter is flushed.

In demo code, shifter0 is used as the TX shifter and shifter1 is used as the RX shifter, so that the following API can be used after
a frame has been transmitted.

void FLEXIO_SPI_FlushShifters(FLEXIO_SPI_Type *base)
{
 volatile uint32_t tmp;
 base->flexioBase->SHIFTCTL[base->shifterIndex[0]] &= ~FLEXIO_SHIFTCTL_SMOD_MASK;
 base->flexioBase->SHIFTCTL[base->shifterIndex[0]] |=
FLEXIO_SHIFTCTL_SMOD(kFLEXIO_ShifterModeTransmit);
 tmp = base->flexioBase->SHIFTBUF[base->shifterIndex[1]];
 __DSB();
}

In fact, this additional load occurs during the transmission of every byte in a frame, but because it is a continuous working mode,
no exception is generated.

To achieve the continuous mode, Table 1 lists the configuration for timer 0, configuration marked as bold text is the key point which
is different with the default SDK. After this modification, the slave device can work in continuous mode.

Table 1. Configurations for timer 0

Items Configurations

Trigger select Trigger from FlexIO_D0 input

Trigger polarity Active low

Trigger source Internal trigger

Pin config Output disable

Pin select FlexIO_D26

Table continues on the next page...

NXP Semiconductors
Emulating a SPI slave device in continuous mode

FlexIO Emulation on SPI Slave Device which Works in Continuous Mode with Dynamic Frame Size, Rev. 0, 23 August 2021
Application Note 4 / 10

Table 1. Configurations for timer 0 (continued)

Items Configurations

Pin polarity Active high

Timer mode Single 16-bit counter mode

Timer output Timer output is logic zero when enabled and is not affected by timer reset

Timer decrement Decrement counter on pin input, shift clock equals pin input

Timer reset Timer never resets

Timer disable Timer disabled on trigger falling1

Timer enable Timer enabled on trigger rising edge1

Timer stop bit Disable

Timer start bit Disable

Timer compare 15 ((bitCountPerChar * 2 - 1)

1. Because the trigger polarity setting is active low, so that the enable signal is the rising edge (The real input signal is a
falling edge).

Table 2 lists the configuration for shifter 0.

Table 2. Configurations for shifter 0 TX mode

Items Configurations

Timer select Timer 0

Timer polarity Shift on falling edge of shift clock

Pin config Shifter pin output

Pin select FlexIO_D21

Pin polarity Active high

Shifter mode Transmit mode

Input source Input from pin

Shifter stop bit Disable

Shifter start bit Disable, transmitter loads data on enable

Table 3 lists the configuration for shifter 1.

Table 3. Configurations for shifter 1 RX mode

Items Configurations

Timer select Timer 0

Timer polarity Shift on rising of shift clock

Pin config Output disable

Pin select FlexIO_D22

Table continues on the next page...

NXP Semiconductors
Emulating a SPI slave device in continuous mode

FlexIO Emulation on SPI Slave Device which Works in Continuous Mode with Dynamic Frame Size, Rev. 0, 23 August 2021
Application Note 5 / 10

Table 3. Configurations for shifter 1 RX mode (continued)

Items Configurations

Pin polarity Active high

Shifter mode Receive mode

Input source Input from pin

Shifter stop bit Disable

Shifter start bit Disable, transmitter loads data on enable

3.3 SPI slave configuration in continuous mode with dynamic frame size
As the default SDK settings, the DMA is used to move data to improve efficiency. But DMA must receive a fixed size of data before
it can generate an interrupt. In practical applications, the size of the data transmitted in each frame is not fixed, and the slave device
usually does not know how much data there is in a frame. In this case, the method of generating an interrupt after receiving the
specified size of data using DMA cannot meet the actual requirements. During the transmission of LPSPI, the falling edge of CS
pin means the beginning of the transfer, and the rising edge of CS means the end of the transfer. Therefore, the slave device can
know that a frame of data has completed the transmission by detecting the rising and falling edges of the CS pin.

In order to achieve this function, a timer can be used to detect the status of the CS pin. The basic method it that using a timer
works under 16-bit counter mode and the count value is 0. That means once the timer timeout, it can generate a compare event
and there is a FLEXIO interrupt generated. The slave device handles this interrupt and know that a frame data has been received.
Now, there are two questions. The first is when the timer enables and what is the timer decrement source, and the second is how
the slave knows how much data it has received using DMA.

For the first question, the timer can be enabled by the falling edge of pin or trigger signal. About the timer decrement source, both
decrement on pin input or trigger input can be used. By these settings, the timer can be enabled by CS pin falling edge, then when
CS pin rises up, the compare event occur and at the same time a FlexIO interrupt generated. Besides this, the timer also must be
disabled on timer compare event.

Table 4 and Table 5 lists the detailed settings by using falling edge of pin and trigger signal.

Table 4. Configurations for timer 1 using edge of pin

Items Configurations

Trigger select NA

Trigger polarity NA

Trigger source NA

Pin config output disable

Pin select FlexIO_D00

Pin polarity Active low

Timer mode Single 16-bit counter mode

Timer output Timer output is logic one when enabled and is not affected by timer reset

Timer decrement Decrement counter on pin input (both edges) shift clock equals pin input

Timer reset Timer never resets

Timer disable Timer disabled on Timer compares

Table continues on the next page...

NXP Semiconductors
Emulating a SPI slave device in continuous mode

FlexIO Emulation on SPI Slave Device which Works in Continuous Mode with Dynamic Frame Size, Rev. 0, 23 August 2021
Application Note 6 / 10

Table 4. Configurations for timer 1 using edge of pin (continued)

Items Configurations

Timer enable Timer enabled on pin rising edge1

Timer stop bit Disable

Timer start bit Disable

Timer compare 0

1. Because the pin polarity setting is active low, so that the enable signal is the rising edge (The real input signal is a
falling edge).

Table 5. Configurations for timer 1 using edge of trigger

Items Configurations

Trigger select Trigger from FlexIO_D0 input

Trigger polarity Active low

Trigger source Internal trigger

Pin config Output disable

Pin select NA

Pin polarity NA

Timer mode Single 16-bit counter mode

Timer output Timer output is logic one when enabled and is not affected by timer reset

Timer decrement Decrement counter on trigger input (both edges) shift clock equals timer output

Timer reset Timer never resets

Timer disable Timer disabled on timer compares

Timer enable Timer enabled on trigger rising edge1

Timer stop bit Disable

Timer start bit Disable

Timer compare 0

1. Because the trigger polarity setting is active low, so that the enable signal is the rising edge (The real input signal is a
falling edge).

The second question is how the slave knows how much data it has received using DMA. There is an API can be used:

static inline status_t FLEXIO_SPI_SlaveTransferGetCountEDMA(FLEXIO_SPI_Type *base,
 flexio_spi_slave_edma_handle_t *handle,
 size_t *count)

But for this API, note the following points:

• The comment of this API is not very clear (has updated on SDK 2.11.0 version), the function for this API is to get the number
of bytes transferred so far by FlexIO SPI DMA.

NXP Semiconductors
Emulating a SPI slave device in continuous mode

FlexIO Emulation on SPI Slave Device which Works in Continuous Mode with Dynamic Frame Size, Rev. 0, 23 August 2021
Application Note 7 / 10

• The result of this API (count, the third parameter on API) cannot be used directly, because when enable the continuous mode,
there is an overrun, it triggers a new DMA loop. So that, the received data size should be:

size = count - 1; //The count is the third parameter on API

After getting the size, the following API must be used to abort a FlexIO SPI using DMA. For now, the real function of this API is
STOP transfer, not Abort, that means some modification work must be done. This issue is fixed on SDK 2.11.0 version.

void FLEXIO_SPI_SlaveTransferAbortEDMA(FLEXIO_SPI_Type *base, flexio_spi_slave_edma_handle_t *handle)

Update this API on fsl_flexio_spi_edma.c , line "409" and "410", use the following code instead of the old one.

EDMA_AbortTransfer(handle->txHandle);
EDMA_AbortTransfer(handle->rxHandle);

After solving these two problems, the slave can receive data frames with changing data size. But there is still a limitation in this
case, that is the size of a frame should be less than or equal to the max size of DMA receive size.

4 Example code
Before running the code, the board must be set up.

• Remove the resistor R90 and weld 0 Ω resistor to R800.

• Connect the master and slave on the EVK board by the following settings.

For details, see Table 6.

Table 6. Example code

Pin name Master (LPSPI1) Pin name Slave (FlexIO SPI)

SOUT J57-8 ← → SIN J26-6

SIN J57-10 ← → SOUT J26-4

SCK J57-12 ← → SCK J26-8

CS J57-6 ← → CS J56-10

The specific implementation code is provided in the attachment of this application note, open the edma_lpspi_transfer slave
project and replace the files with the files in attachment.

Path: boards\evkmimxrt1010\driver_examples\flexio\spi\edma_lpspi_transfer\slave

On the default settings, master sends 16 bytes to the slave and the slave generates a FlexIO interrupt. The slave can receive a
maximum of 64 bytes. User can change the following parameters to configure the size of a frame.

masterXfer.dataSize = TRANSFER_SIZE;

Figure 4 shows the waveform of the SPI signal in continuous mode. After a frame has been transmit/received, a simple check will
check whether any problems occurred during the transmission. If no problem occurs, inputting any character in the serial terminal
starts a new frame of data transmission.

NXP Semiconductors
Example code

FlexIO Emulation on SPI Slave Device which Works in Continuous Mode with Dynamic Frame Size, Rev. 0, 23 August 2021
Application Note 8 / 10

Figure 4. Waveform of the SPI signal in continuous mode

5 Revision history
Table 7 summarizes the changes done to this document since the initial release.

Table 7. Revision history

Revision number Date Substantive changes

0 23 August 2021 Initial release

NXP Semiconductors
Revision history

FlexIO Emulation on SPI Slave Device which Works in Continuous Mode with Dynamic Frame Size, Rev. 0, 23 August 2021
Application Note 9 / 10

How To Reach
Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under its
patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the
following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that
best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless
of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 23 August 2021
Document identifier: AN13358

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 FlexIO overview
	3 Emulating a SPI slave device in continuous mode
	3.1 SPI slave configuration in discontinuous mode
	3.2 SPI slave configuration in continuous mode
	3.3 SPI slave configuration in continuous mode with dynamic frame size

	4 Example code
	5 Revision history

