AN12437

i.MX RT Series Performance Optimization

Rev. 1 — Febuary 2020 Application Note
. Contents
1 Introduction 1 Introduction.........cccccovreeenncin e, 1
i.MX RT series take advantage of the Arm® Cortex®-M7 core with 32K/32K L1 2 OVEIVIEW.....coceeereirieeeeesseensan s essne s 1
I/D-Cache, which operates at the speed up to 600 MHz to provide high CPU
. 3 Memory performance test...................... 3
performance and best real-time response.
4 How to improve performance................. 7
* i.MX RT1050 processor has 512 KB on-chip RAM, which can be flexibly P P
configured as TCM or general-purpose on-chip RAM. 5 How to identify key codes in one
application.........ccccceeveivrinniccciiieen s 9
* i.MX RT1060 processor has extra 512 KB OCRAM, totally 1 MB on-chip
RAM. 6 Conclusion..........ccceeeviiimrnensieenieeneeen 16
7 Revision history...........ccccoceviiicvennnnn. 16

i.MX RT series provide various memory interfaces, including SDRAM, RAW
NAND FLASH, NOR FLASH, SD/eMMC, and FlexSPI. These rich features
help i.MX RT series to implement flexible applications and high performance. The system performance running in these memory
devices depends on system and memory type.

This document intends to introduce how to optimize the system performance running on different memory device.

2 Overview

As integrated with high performance of the Cortex-M7 core, the i.MX RT can:

* Run up to 600 MHz.

» Enhance the performance with 32 K DCACHE and ICACHE.

» Partition 512 KB FlexRAM to DTCM/ITCM/OCRAM-based application with a flexible and configurable FlexRAM.
Refer to AN12077 for how to configure FlexRAM.

i.MX RT is flashless. However, it is embedded with the high performance internal SRAM and integrates the rich peripherals to
interface with lots of memory devices, such as, SDRAM, RAW NAND FLASH, NOR FLASH, SD/eMMC, Quad SPI flash, and
hyper flash.

According to the working mode, memory can be divided into two types.

« XIP memory: Executing codes in place.

» Non-XIP memory: Not supporting the codes executing in place but loading the code to executable memory.
The below lists the executable memory supported by i.MX RT series.

« ITCM/DTCM

+ SDRAM

+ OCRAM

* Hyper RAM

» Hyper/Octal NOR Flash (XIP support)

* QSPI NOR Flash (XIP support)

» Parallel NOR Flash (XIP support)

h
P


https://www.nxp.com/docs/en/application-note/AN12077.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES?utm_medium=AN-2021

NXP Semiconductors

Overview

« Parallel SRAM

Based on the bus architecture and memory characteristics, difference memory present different performance. Figure 1 shows
the bus architecture of RT series, taking the i.MX RT1060 system bus diagram as an example.

CPU
Cortex M7 Platform

CCORTEXM %2 remap OCRAM AXBS P
3K FPLLZK EAXIzAHB 32b|t 4@

CACHE | DCACHE @ l 32 M hz

SIM_M7
SIV_M — YD
32 bit 64-bit
@132Mhz @132Mhz
SIM_MAIN
64 bit SIM_EMS
@132Mhz 64 bit
@132Mhz
AHB32 AXI32 AHB32
AXl64 AHBE4

Figure 1. i.MX RT1060 system bus diagram

As shown in Figure 1, TCM is tightly coupled with M7 core and contains the same frequency with core. OCRAM and SEMC
connect to SIM_M?7 fabric, and FlexSPI connects to SIM_EMS. it show the different performance to different master accessing
the same memory. For example,

* TCM shows high performance accessed by MCU core.

* OCRAM shows higher performance than TCM when accessed by DMA, while lower performance when accessed by MCU
core. The reason is that OCRAM and DMA are in this same bus fabric, with less latency during the access.

Table 1 describes the bus fabric summary.

Table 1. Bus fabric summary

Name Bus width Typical frequency Comments

SIM_M7 64 132 MHz All the fabric runs at the same
clock frequency and it is

SIM_MAIN 64 .
always m:1 synchronous to
SIM_EMS 64 M7 core clock. This table is
based on the core frequency
SIM_AXBS_P 32 of 528 MHz.
SIM_M 32

Table 2 describes the bus bandwidth of each memory supported by i.MX RT.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 2/17




NXP Semiconductors

Memory performance test

Table 2. Memory bus bandwidth

Memory Bus width (:bit) Max speed (:MHz) Comments

ITCM 64 600 It has two DTCM controllers

DTCM 230 600 with 32 bit, available to
access odd or even address

OCRAM 64 132 by different controller.

SDRAM 16 166

Hyper RAM 8 (DDR) 166

Hyper flash 8 (DDR) 166

QSPI flash 4 133

The bus bandwidth is the major element to impact the memory performance, but it is not all for device memory performance.
There are some enhance features from the bus architecture to improve memory performance, such as ICACHE/DCACHE.
FlexSPI IP supports extra 1 KB RX AHB prefetch buffer, and it may prefetch the flash data to dedicated buffer, which saves the
access latency during the read access. However, the improvement depends on application. For example, it gets improvement
more when the cache hit rate is high and accessing the QSPI flash is in sequence. The system performance is related to memory
device and application case. It can get the similar performance in some application cases, as shown in Table 7. However, it has
the big gap running on different memory in the other case. The below describes what is gap and how to improve it.

3 Memory performance test

Memory performance depends on memory characteristics, system architecture, and other facts, such as, cache, prefetch buffer
and pipeline, and so on.

The same memory presents different performance when accessed by different masters (CPU Core, PXP, LCD, CSI, USB, eDMA,
and others). For example, SDRAM can reach to high throughput when accessed by LCD and PXP, as these two masters support
back-to-back access. It can get better performance comparing other master access, but drop more when accessed by CPU core.
The following performance discussion is based on the access by CPU core.

3.1 SDRAM performance

i.MX RT series support to interface with 8/16-bit SDRAM device and can run up to 166 MHz. Table 3 shows the test result of
transferring, by reading/writing 4096 bytes which measures the duration of SDRAM transferring by system tick.

Table 3. SDRAM performance

Items Performance (:MB/s) Comments

DCache enabled DCache disabled
SDRAM read 111 25 SDRAM Working @ 166 MHz
SDRAM write 323 322 SDRAM Working @ 166 MHz

Table 3 shows the good performance on SDRAM write access. The benefits are from the pipeline and SEMC IP high performance,
also cache improved more on reading performance.

To reproduce the test above, you can fetch the test code from the attached software package. The test steps are as follows.

* Unzip the performance test package and open semc. eww through c:\Users\nxal18895\Desktop\New folder\AN12437SW

\boards\evkbimxrt1050\demo apps\performance test\sdram perforamnce test\iar. Please firstinstall IAR version
8.40 or later.

* Build the debug sub-project to generate the s-record file. The macro DCACHE_ENABLE is used to disable or enable
DCACHE. You can modify it based test requirements.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 3/17




NXP Semiconductors

Memory performance test

» Generate the sb file with the following commands.

elftosb.exe -f imx -V -c imx-itcm-unsigned.bd -o ivt flexspi nor normal.bin semc.srec

elftosb.exe -f kinetis -V -c program flexspinor image hyperflash.bd -o boot image.sb

ivt flexspi nor normal nopadding.bin

* Program the flash by MFGTools based on the IMXRT1050-EVKB board.
» The code is running on the internal ITCM. Do not directly run the code by debugging, which may affect performance.
After downloading the code to flash, you can run and see the test results in serial terminals.
NOTE

The last test is for hyper flash. Configure the flash and enable it working at the target speed. For details, refer to
FlexSPI performance.

DCACHE is enabled!

SEMC SDRAM Performance test Start!

Start test SDRAM write performance!
#isdram write perf##ftl: 324695; t2: 317090; diff: 7605: ns: 12675,
datasize: 4096 byte; perf: 323MB/s; g ms: 0

Start test SDRAM read performance!

sdram read and write correctly!
#ftisdram read perfH##tl: 201722; t2: 179718; diff: 22004: ns: 36673,
datasize: 4096 byte; perf: 111MB/s; g ms: 0

Start test Hyper Flash read performance!
##Hyper flash AHB read perf###tl: 445829; t2: 437546; diff: 8283; ns:
13805, datasize: 4096 byte: perf: 296MB/s; g ms: 0

SEMC SDRAM Performance test End.

Figure 2. Sdram performance test

3.2 FlexSPI performance

The i.MX RT supports the FlexSPI interface. It provides flexible configurations to interface the QSPI flash, OCTAL flash, hyper
flash and hyper RAM. It supports AHB and IP command access. AHB access helps to achieve high performance, which is
described as follows.

The FlexSPI supports the eXecute-In-the-Place (XIP) on that connected NOR flash. BEE module attached to FlexSPI decrypts
images on the fly. The following enhanced features of FlexSPI help to improve the performance.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 4/17




NXP Semiconductors

» System cache(32 k DCACHE and 32 K ICACHE)
» AHB buffer, 8*64 bit TX AHB buffer and 128*64bit RX AHB buffer

Table 4 shows the performance evaluation, taking the hyper/QSPI flash as an example.

Table 4. Hyper flash performance

Memory performance test

ltems Performance (:MB/s) Comments
DCache enabled, |DCache disabled, | DCache disabled, | DCache enabled,
prefetch buffer prefetch buffer prefetch buffer prefetch buffer
enabled enabled disabled disabled
Hyper flash 296 70 15 92 Continuously
reading 4 KB bytes
@166 MHz DDR
mode
QSPI flash 58 58 8 35 Continuously
reading 4 KB bytes
@133 MHz SDR
mode

The hyper flash contains higher performance than QSPI flash. It benefits from the bus bandwidth, working speed and working
mode (DDR). The performance gets more improvement by enabling cache and prefetching buffer. The test results show that
prefetching buffer improve performances more even it gets the similar performance on QSPI flash when prefetch buffer is enabled
but no matter when the cache is enabled or disabled. The performance drops by about 77 % when the prefetch buffer and cache
is disabled.

The prefetch provides the significant effects to flexSPI performance. It specifies different buffer size for different master. That
means some master may have the dedicated prefetch buffer, which can optimize performance in some applications. For example,
it can assign specified buffer size to eDMA. If it needs frequent data transfers from external QSPI flash to internal SRAM by
eDMA, other master will not destroy prefetch buffer contents used for eDMA. Reduce the access latency if next access eDMA
requests exactly hit buffer. In this way, it improves performance more.

The FlexSPI provides register as follows to set buffer size for different master.
+ AHBRXBUFOCRO
+ AHBRXBUFOCR1
+ AHBRXBUFOCR2
+ AHBRXBUFOCR3

User can modify these registers and assign dedicated buffer sizes to service in certain master, and master ID definition, as
shown in Table 5.

Table 5. Master IDs

Module Master ID
Core platform 000b
eDMA 001b
DCP 010b
All others 011b

As seen in Table 5, the independent master ID is assigned to core, eDMA and DCP. Other masters share one ID, say PXP, USB
and so on.

Figure 3 shows the general prefetching scheme.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020

Application Note 5/17



NXP Semiconductors

Memory performance test

When the prefetch buffer is enabled, once receiving the request from the bus, it first checks whether the request matched the
current AHB buffer address range. If yes, it directly returns the data. If not, it triggers to read new data to AHB buffer. After returning
the required data to bus, it continues to prefetch the following flash data to AHB buffer until the buffer is full.

Receive instruction to access QSPI flash

heck if address
hit AHB prefetch
buffer address
range

Check if was
prefetching

Is data ready
in AHB Buffer

Waiting for prefetching Trigger to access
data to AHB buffer QSPI flash * Abort current prefetching

k

> Return data to
specified master

(~ Continue to prefetch
following address to
AHB buffer till buffer
\_ 15 full _J

Figure 3. FlexSPI prefetching flow

3.3 Performance comparison on different memory

To evaluate the performance of executing code in different memory, it takes the test to run the same code in different memory
and then calculates running time for comparison.

Taking one common audio encoding algorithm, OPUS, as an example, it encodes the same waveform file saved in SD card by
software algorithm, and calculates the duration of encoding waveform to OPUS format. Table 6 shows the test results.

Table 6. Performance comparison

Test application Code size (:Bytes) Code location Flash speed Avergae speed (:uS)
Opus (encoder) 188 238 Hyper flash 166 MHz DDR 828364
188 238 Hyper flash (encrypted | 166 MHz DDR 847894
image)
188 238 QSPI flash 127 MHz SDR 1065541
188 238 SDRAM 163 MHz SDR 826454
188 238 ITCM 600 MHz 732964

Table 6 shows the performance comparison in different memory. It gets the best performance on running on ITCM, and the lowest
performance on QSPI flash. QSPI flash is slower than TCM by about 45%, and than Hyper flash or SDRAM by 28%. It also has
a slight drop on encrypted image, about 2.6%.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 6/17




NXP Semiconductors

How to improve performance

The performance depends on the application case. In some applications, it drops more on running code in some memory (QSPI
flash), while the other application drops less. In some applications, it is possible to get the same performance. For example, in
Table 7, the CoreMark nearly gets the same score in different memories.

Table 7. CoreMark score

Memory Hyper flash QSPI flash SDRAM ITCM
CoreMark Score(:/ 5.059662 5.059659 5.059659 5.059659
MHz)

Table 7 shows that the performance is determined by application and coding optimization. The coding optimization means to
optimize the code to get the high cache hit rate and place the key code to ITCM for performance improvement. For details, refer
to How to improve performance.

4 How to improve performance

The ways to improve the performance include:
» Keep high cache hit rate.
 Allocate the key code to internal RAM.
The facts impacting the cache hit rate include:
* Look-up table
» Branch

In most applications, the look-up table is used. When the look-up table is frequently accessed, it reads small size data, even one
byte each time. Each read access possibly leads to cache miss hit. A new flash read operation is triggered and the perforamnce
drops due to frequent triggering issues. The frequently branch also impacts the performance. it possibly leads to cache miss hit
in this case. For these applications, the best way to improve the performance is to allocate the code to internal SRAM (ITCM/
DTCM).

4.1 Allocating parts of code to specified memory

This section introduces how to allocate the codes to an internal RAM or other specified memory.
For how the SDK allocates the part of code to an internal SRAM, refer to the demo of power mode switch.

It defines the MACRO QUICKACCESS_SECTION_CODE in the 1pm.h to allocate the function to a specified memory, as shown
in Figure 4.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 7/17




NXP Semiconductors

How to improve performance

/*! @name Time sensitive region */

#error Toolchain not supported.

~#endif /* defined( ICCARM ) */

#else

H#if (defined( ICCARM )

#define QUICKACCESS SECTION CODE (func) func
#elif (defined( ARMCC VERSION))

#define QUICKACCESS SECTION CODE (func) func
#elif (defined( MCUXPRESSO))

#define QUICKACCESS SECTION CODE (func) func
#elif (defined(_GNUC_))

#define QUICKACCESS SECTION CODE (func) func
felse

#error Toolchain not supported.

F#endif

#endif /* _ FSI_SDK _DRIVER_QUICK ACCESS_ENABLE */

Figure 4. Macro definition for function allocation

/F R */

I#if defined(XIP EXTERNAL FLASH) && (XIP EXTERNAL FLASH == 1)

A#if (defined( ICCARM ))
#tdefine QUICKACCESS_SECTION_CODE (func) _ ramfunc func
#elif (defined( ARMCC VERSION))
#define QUICKACCESS SECTION CODE (func)  attribute ((section("RamFunction"))) func
#elif defined( MCUXPRESSO)
#define QUICKACCESS SECTION CODE (func)  attribute ((section(".ramfunc.$SRAM ITC")))
#elif (defined( GNUC ))
#define QUICKACCESS SECTION CODE (func) _ attribute ((section("RamFunction"))) func
#else

func

Accordingly, it defines one section, RamFunction, in the linker file, evkmimxrt1060 power mode switch ca.scf, as shown in

Figure 5.

RW_m data m_data_start m data_size-Stack Size-Heap_Size { ; RW data
.ANY (+RW +Z1I)
* (NonCacheable.init)
* (NonCacheable)

}

ARM LIB HEAP +0 EMPTY Heap_ Size { ; Heap region growing up

}

1

ARM LIB_STACK m_data_start+m_data_size EMPTY -Stack_Size { ; Stack region growing down

* (RamFunction)

BW m ram text m text2 start UNINIT m text2 size { ; load address = execution address

}

Figure 5. Linker file definition for "RamFunction"”

To allocate one function to a specified RAM, refer to the code in Figure 6.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020

Application Note

8/17



NXP Semiconductors

How to identify key codes in one application

QUICKACCESS SECTION CODE(void LPM SwitchBandgap (void)) :
QUICKACCESS_SECTION_CODH(void LPM_RestoreBandgap (void)):
QUICKACCESS_SECTION_CODEj(void LPM_SwitchToXtalOSC(void)) ;

QUICKACCESS SECTION CODE|(void LPM_SwitchToRcOSC (void)) ;

QUICKACCESS SECTION CODEj(void LPM SwitchFlexspiClock(lpm power mode t power mode)) ;
QUICKACCESS SECTION CODHE(void LPM RestoreFlexspiClock(void));

Figure 6. Examples of allocationg function to specified RAM

The £s1 common.h in sdk provides a similar MACRO definition for use.

5 How to identify key codes in one application

The internal RAM size is finite even RT has provided a big size for internals RAM (up to 2 M bytes in some part). It is still not
enough to place all codes to internal RAM in some applications, and it is hard to know which function is critical to impact
performance. A complex application may contain hundreds of functions, so the function analysis is difficult and more efforts are
required. The below introduces one simple way to get the function profiling by IDE tools (IAR and MDK).

5.1 Function profiling

Many IDE tools support to get function profiling by Serial Wire Output (SWO) or Embedded Trace Macrocell (ETM) trace. The
i.MX RT provides the full support by ETM and SWO TRACE. The below takes IAR and MDK as examples to show how to get
the function profiling.

5.1.1 Hardware settings

The i.MX RT evaluation board reserves the 20-way J-Link connector. SWO trace can be implemented by JLINK and the board
can be reworked by flying wire to connect ULink supported by ETM trace.
» SWO trace

SWO supports a single pin output signal from the core. The i. MX RT series support SWD and JTAG debug. Table 8 describes
J-link definition for JTAG and SWD.

Table 8. J-link connector definition

Pin number Pinout for JTAG Pinout for SWD Pin number Pinout for JTAG Pinout for SWD
1 Viref Viref 2 NC NC
3 NTRST NC 4 GND GND
5 TDI NC 6 GND GND
7 TMS SWDIO 8 GND GND
9 TCK SWCLK 10 GND GND
11 RTCK NC 12 GND GND
13 TDO SWO 14 GND GND
15 RESET RESET 16 GND GND
17 QBGRQ NC 18 GND GND
19 5V - supply 5V - supply 20 GND GND

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 9/17




NXP Semiconductors

How to identify key codes in one application

i.MX RT1050 and i.MX RT1020 remap the trace SWO signals to different pin, which is not multiplex with JTAG_TDO. The
board needs to be reworked by flying wire TRACE_SWO to pin13 of J-link connector. For i.MX RT1060, it multiplex
JTAG_TDO with TRACE_SWO to the pin connected to J-Link connector. SWO trace can work without any changes.

e ETM trace

ETM is a hardware microcell. When connected to a core, ETM outputs instructions and data trace information on a trace
port. The ETM provides core-driven trace through a trace port compliant to the ATB protocol.

The ULINK supports ETM trace and appropriate connectors, as shown in Figure 7.

WTref
GMND
GMND

KE
GNDDetect
GNDITgtPwr+Cap
GMDITgtPwr+Cap
GND
GMND
GMND

Figure 7. Cortex-M ETM interface

,
3
5
7
g

1"
13
15
17
19

O
O

-

OoOoOoOoaoao

OO0OOO0OO0OoOooOoogaoano

2
4
B
8
10
12
14
16
18
20

Cortex-M ETM Interface
20-pin Connector

SDWIO / TMS
SWDCLK { TCLK
SWO 1 TDO

NC / TDI
nRESET
TRACECLK
TRACEDATA(0]
TRACEDATA[1]
TRACEDATA(2]
TRACEDATA(3]

To implement ETM, fly a wire to connect the MCU and Cortex-M connector with the following signals.

— TRACECLK

— TRACEDATA[0]

— TRACEDATA[1] (optional)
— TRACEDATA[2] (optional)
— TRACEDATA[3] (optional)

5.1.2 Software settings

To enable i.MX RT trace function, it is necessary to enable the TRACE clock and configure the appropriate pinmux.

* An example for configuring i.MX RT1060 to enable the SWO function:

— Trace clock configurations

CLOCK_EnableClock (kCLOCK Trace)

CLOCK_SetDiv (kCLOCK TraceDiv, 2)

CLOCK_SetMux (kCLOCK_TraceMux, 2)

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020

Application Note

10/17



NXP Semiconductors

How to identify key codes in one application
— PAD configurations
IOMUXC_SetPinMux (IOMUXC GPIO AD BO 10 ARM TRACE SWO, 0U)

» An example for configuring the i.MX RT1060 to enable the ETM function:
— Trace clock configuration
CLOCK_EnableClock (kCLOCK Trace) ;

CLOCK_ SetDiv (kCLOCK TraceDiv, 3);
CLOCK_SetMux (kCLOCK TraceMux, 0);

— Pad configurations

IOMUXC SetPinMux (IOMUXC GPIO BO 12 ARM TRACE CLK, 0U);
IOMUXC_SetPinMux (IOMUXC_GPIO BO 04 ARM TRACEO, 0U)
IOMUXC_SetPinMux (IOMUXC_GPIO BO 05 ARM TRACEl, 0U);
IOMUXC_SetPinMux (IOMUXC_GPIO BO 06 ARM TRACE2, 0U)
IOMUXC SetPinMux (IOMUXC GPIO B0 07 ARM TRACE3, 0U);

5.1.3 IDE settings

The below takes IAR as an example to introduce how to set tools for function profiling.

1. Connect the J-Link to the target board, MIMXRT1060-EVK, and click the J-Link to configure the SWO, as shown in Figure
8.

diink | Towsls Window Heip

vactor Catoh.

Ditapie interrupts When Steppang L Conlopnitio

Leave Target Running PE Lamging Disha Log i Loy
by i by 11 by
TR Brace Settingt... L e e T

ETRA Trace Save
ETM Trace

*  Fumction Trsoe

FWD Configusatson.,, I
VA0 Trate Window Sellbmgs.

Fisas [ismgissif . == ] P
WD Trace Save... WP vk v e b
WD Trade [ PP

[ nternept Log Dok S R
7 iterueet Log Summary P [Rv— = '
Datta Log i = he Sl P
Dals Log Summary Frasilad ot i i
went Lag D sbeh " 2 33 a8 7 T
Wil T Tamins LG Wi LTI T8 LT ) OO T (T T

Evend Sumsary n N3 L § 7 3
Power Lag Setup e e o ol b Ll S CEO L) LR
1 PRI DR T
Pirveet Log
m Timeline o 1 Carcal

|u:| Function Profiler

[F] Beeakpoint Usage

Figure 8. SWO configurations

2. Click Function Profiler to open the Function Profiler window. Figure 9 shows how to open the J-link window and Function
Profile window.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 11/17




NXP Semiconductors

How to identify key codes in one application

Ldlink | Teals Window Help
ST DL
Vector Catch...
Disable Intemupls When Stepping
Leave Target Munning

ETRA Trace Sattings...
ETRA Trace Save..

ETRA Trace

Fufien Cally FlatTrree  Floa Tomi (%) Ace Tv  dee Tima %) A
A Punciion Trage App a 1] . L]
Appd L 1] - o -
WD Configuration.. Aepd 8 B = B =
TWO Trace Window SeEtingt... Appl [ o - o -
Appd L ] - (1] -
WO Trsce Save.
Appd L 1] - 0 -
WD Teace Agph a o X o
[F] nterrupt Log lpﬂf [} 1] - B - -
[T snterrupt Loo Summany
Data Leg

Dats Log Summary
Ewent Log

Ewenl Summary
Power Log Sefup
Power Log

El mimetne
[E[ Furetamn Prafive ]

R Dreakpoint Lsage

Figure 9. Function Profile window

3. Right click Function and select source:Sampling, as shown in Figure 10.

~  Enable
Clear
Filtering ’
Source; Trace (calls) i
Source: Trace (flat) g

+  Source: Sampling

Power Sampling

Save to File..

= Show Source

Figure 10. Function Profile settings

Run codes for some time and stop to check the functon profiling, as shown in Figure 11.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 12/17




NXP Semiconductors

How to identify key codes in one application

Address

026017c800-0x6. . .

Function PC Samples PC Samples (%)
4__Ap (127637

W App8 104876 20.58
7| Appb 80883 15.88
7l App5s 76105 14 .94
J App 38493 7.56
7 App2 21685 4.26
Jl Appd 14601 2.87
vl App3 14516 2.85
7 Appl 14459 2.84
7 AppDd 14458 2.84

Figure 11. Function Profile result

0=6018c800-0=6. . .
0=60164400-0=6. . .
0=6015b000-0=6. . .
0=60003=42-0=6. . .
0=60003d48-0=6. . .
0=60003d£0-0=6. ..
0x60003d9c-0=6. . .
0=60003cf0-0=6. ..
0=60003c98-0=6. . .

As seen in Figure 11, App7 account for high loading rate in this application and then optimize this code to ITCM for

performance improvement.

After taking optimization of allocating App7 to ITCM, the performance improves by 18.5 %. Figure 12 shows the test result.

: G00HHz
IpgC1k) 150000000

ion tine

Figure 12. Test result of code optimization

Optimize App7()

Fluql

15000000

ipllalue: 300000000

The MDK IDE doesn't support the function profiling by SWO trace. The board needs to be reworked to support the ETM trace.

For details, refer to Hardware settings.

The below shows how to perform the ULINK Pro settings.

1. Connect the ULINK Pro to the target board, the reworked MIMXRT1060-EVK. Select the correct debugger and click

setting, as shown in Figure 13.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020

Application Note

13717



NXP Semiconductors

How to identify key codes in one application

ﬂ Options for Target ‘helle_werld rarm_0x1400_debug' )4
Device | Target | Output | Listing | User | C/C++ | Asm | Linker | Debug | Utidies |
" Use Simulator  with restrictions Settings | | ™ Use: qumc Pro Cortex Debugger d Settings
[ Lim# Speed to Redl-Time
¥ Load Application at Starup W Pun to main) W Load Application at Startup v Funto main()
Inftialization Fle: Intiakzation File:
| J Edit [evkmimt 1060_ram_0< 1400 _] Edt.. |
~ Restore Debug Session Settings r~ Restore Debug Session Settings
v Breakpointz W Toolbox ¥ Breakpoints ¥ Toolbox
W Watch Windows & Performance Analyzer ¥ Watch Windows [¥ Tracepoints
W Memory Display [V System Viewer ¥ Memory Display [¥ System Viewer
CPU DLL: Farameter: Driver DLL: Farameter:
[SARMCM3.DLL | -REMAP -MPU fSAHMcm.DLL | MPU
Dialog DLL: Parameter. Dialog DLL: Parameter:
|DCM.DLL [pr:r.w [TCM.DLL |4;cruw
[T Wam i outdated Executable is loaded [T Wam  outdated Executable is loaded
Manage Component Viewer Description Files ... I

oK Cancel Defaults ] Help |

Figure 13. Debugger settings in MDK

2. Click Trace to set the ETM, as shown in Figure 14.

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 14/17




NXP Semiconductors

How to identify key codes in one application

I~ UrlintedTrace ¥ ETM Trace Enable

Debug Flash Download |
Cm:Uud(:I 600.000000 MHz ¥ Trace Enable
lace Do - Timestamps
|5ync Trace Port with 1-bit Data j ¥ Enable Prescaler I1 vI
CLK: |{]_[Fna_*_r_l Do: |{}_{}ns:_] - PC Sampling

chaaa:huz-rm vl
[V Periodic Feriod:l 27.307 us

I on Data R/W Sample

r Trace Events
¥ CPI: Cycles per Instruction
V¥ EXC: Exception overhead
[V SLEEP: Sleep Cycles
¥ L5U: Load Store Unit Cycles
¥ FOLD: Folded Instructions
¥ EXCTRC: Exception Tracing

~ITM Stimulus Ports

Port

24 23 Port 16 15

Fort 31..

24 v Port 23.16 [

Pot 15.8 [

Port 8 7 Port 0

Enable: [OxFFFFFFFF ivlv:vlvivlvivlv Wivviviviviviv viviviviviviviv Wiviviviviviviv

Privilege: |mummma

Pot 7.0

o ]

Cancel

Figure 14. Trace settings in MDK

_ tee |

To select the Trace Port with 1-bit data or other options is determined by the hardware connection.

3. Figure 15 shows the Performance Analyze window.

Y S h:" Status Bar

Toalbars

KB Cuwad RT\RT 10600 SDKASDK_2.4.0_EVK-MIMKRT 1060\ boards\ evimimurt] 060 dema,
File Edit | View Project Flash Debug  Periphersls  Tools  SVES  Window

YR )

3

mE| BEaR-D-o- _
Registers Uil Project Window mance Anslyzar | :
e ] oo [bdien ] Module/Function [Cats  [Timetsec) Irmem B
. el (1, Templates Window o ) Reset_Handier 0 Oua [ =i
= % Source Browser Windon x‘m HardFaul_Handler o Qus U:"- i
il o  Wiidow 5 2
GE} ] Build Output Windew B"HF"-H"’H o Cus U:' l
B SIC Horder NE-8 3
e =— DMAQ_DMAT6_IRGHa..| 0 Qs (0% |
Rs |- Command Windaw DMA2_DMA18_IRQHa... 0 Qs (0% |
o ) casiue .y bcow DMA4_DMA20_IRQHa..| O s (0% |
iy B Symbok Window DMAG_DMA22_IRGHa... 0 tus (0% |
12 H Registers Window Dm__DHM‘_IHQHa... 0 s o I
oo o e ; DMA10_DMA26_IRQH... 0 Qs (0% |
me:“:"m; . DMA12_DMA28_IRQH... (1] s (0% |
& Crhen 2 DMAT4_DMA30_IRQH. . 0 Qus (0% |
= DMA_ERROR_IRGHa.__ 0 s (0% |
= D{ . ogic lyzer oy - R
:r::mw E :;..(Io,::m Anshyzer LPUARTZ_IRGHandker 1] Ous U:. ]
System Viewer W e Coveragt LPUART4_IRQHandler 1] Ous U‘ |
R R, LPUARTE_IRQHandier (] O 0% |
| PIIARTA RO Handler 0 Qus 0% I bt
+ Feriodic Window Update 8 Event Recorder
* | ola Event Statistics
Figure 15. Performance Analyzer window
4. Run codes and stop to watch the performance in the Performance analyzer window.
i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 15/17



NXP Semiconductors

6 Conclusion

Conclusion

This document introduces the system architecture and memory performance supported by i.MX RT10xx series, as well as how
to improve performance and get the function profiling by IDE tools. The document helps customer to optimize code and get good

performance when using the i.MX RT series.

7 Revision history

Table 9. Revision history

Revision number Date Substantive changes
0 05/2019 Initial release
1 02/2020 Update Memory performance test and SDRAM
performance

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020

Application Note

16/17



How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: Febuary 2020
Document identifier: AN12437


http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Overview
	3 Memory performance test
	3.1 SDRAM performance
	3.2 FlexSPI performance
	3.3 Performance comparison on different memory

	4 How to improve performance
	4.1 Allocating parts of code to specified memory

	5 How to identify key codes in one application
	5.1 Function profiling
	5.1.1 Hardware settings
	5.1.2 Software settings
	5.1.3 IDE settings


	6 Conclusion
	7 Revision history

