
1 Introduction
i.MX RT series take advantage of the Arm® Cortex®-M7 core with 32K/32K L1
I/D-Cache, which operates at the speed up to 600 MHz to provide high CPU
performance and best real-time response.

• i.MX RT1050 processor has 512 KB on-chip RAM, which can be flexibly
configured as TCM or general-purpose on-chip RAM.

• i.MX RT1060 processor has extra 512 KB OCRAM, totally 1 MB on-chip
RAM.

i.MX RT series provide various memory interfaces, including SDRAM, RAW
NAND FLASH, NOR FLASH, SD/eMMC, and FlexSPI. These rich features
help i.MX RT series to implement flexible applications and high performance. The system performance running in these memory
devices depends on system and memory type.

This document intends to introduce how to optimize the system performance running on different memory device.

2 Overview
As integrated with high performance of the Cortex-M7 core, the i.MX RT can:

• Run up to 600 MHz.

• Enhance the performance with 32 K DCACHE and ICACHE.

• Partition 512 KB FlexRAM to DTCM/ITCM/OCRAM-based application with a flexible and configurable FlexRAM.

Refer to AN12077 for how to configure FlexRAM.

i.MX RT is flashless. However, it is embedded with the high performance internal SRAM and integrates the rich peripherals to
interface with lots of memory devices, such as, SDRAM, RAW NAND FLASH, NOR FLASH, SD/eMMC, Quad SPI flash, and
hyper flash.

According to the working mode, memory can be divided into two types.

• XIP memory: Executing codes in place.

• Non-XIP memory: Not supporting the codes executing in place but loading the code to executable memory.

The below lists the executable memory supported by i.MX RT series.

• ITCM/DTCM

• SDRAM

• OCRAM

• Hyper RAM

• Hyper/Octal NOR Flash (XIP support)

• QSPI NOR Flash (XIP support)

• Parallel NOR Flash (XIP support)

Contents

1 Introduction.. 1

2 Overview..1

3 Memory performance test......................3

4 How to improve performance.................7

5 How to identify key codes in one
application... 9

6 Conclusion... 16

7 Revision history................................... 16

AN12437
i.MX RT Series Performance Optimization
Rev. 1 — Febuary 2020 Application Note

https://www.nxp.com/docs/en/application-note/AN12077.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES?utm_medium=AN-2021

• Parallel SRAM

Based on the bus architecture and memory characteristics, difference memory present different performance. Figure 1 shows
the bus architecture of RT series, taking the i.MX RT1060 system bus diagram as an example.

Figure 1. i.MX RT1060 system bus diagram

As shown in Figure 1, TCM is tightly coupled with M7 core and contains the same frequency with core. OCRAM and SEMC
connect to SIM_M7 fabric, and FlexSPI connects to SIM_EMS. it show the different performance to different master accessing
the same memory. For example,

• TCM shows high performance accessed by MCU core.

• OCRAM shows higher performance than TCM when accessed by DMA, while lower performance when accessed by MCU
core. The reason is that OCRAM and DMA are in this same bus fabric, with less latency during the access.

Table 1 describes the bus fabric summary.

Table 1. Bus fabric summary

Name Bus width Typical frequency Comments

SIM_M7 64 132 MHz All the fabric runs at the same
clock frequency and it is
always m:1 synchronous to
M7 core clock. This table is
based on the core frequency
of 528 MHz.

SIM_MAIN 64

SIM_EMS 64

SIM_AXBS_P 32

SIM_M 32

Table 2 describes the bus bandwidth of each memory supported by i.MX RT.

NXP Semiconductors
Overview

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 2 / 17

Table 2. Memory bus bandwidth

Memory Bus width (:bit) Max speed (:MHz) Comments

ITCM 64 600 It has two DTCM controllers
with 32 bit, available to
access odd or even address
by different controller.

DTCM 2*32 600

OCRAM 64 132

SDRAM 16 166

Hyper RAM 8 (DDR) 166

Hyper flash 8 (DDR) 166

QSPI flash 4 133

The bus bandwidth is the major element to impact the memory performance, but it is not all for device memory performance.
There are some enhance features from the bus architecture to improve memory performance, such as ICACHE/DCACHE.
FlexSPI IP supports extra 1 KB RX AHB prefetch buffer, and it may prefetch the flash data to dedicated buffer, which saves the
access latency during the read access. However, the improvement depends on application. For example, it gets improvement
more when the cache hit rate is high and accessing the QSPI flash is in sequence. The system performance is related to memory
device and application case. It can get the similar performance in some application cases, as shown in Table 7. However, it has
the big gap running on different memory in the other case. The below describes what is gap and how to improve it.

3 Memory performance test
Memory performance depends on memory characteristics, system architecture, and other facts, such as, cache, prefetch buffer
and pipeline, and so on.

The same memory presents different performance when accessed by different masters (CPU Core, PXP, LCD, CSI, USB, eDMA,
and others). For example, SDRAM can reach to high throughput when accessed by LCD and PXP, as these two masters support
back-to-back access. It can get better performance comparing other master access, but drop more when accessed by CPU core.
The following performance discussion is based on the access by CPU core.

3.1 SDRAM performance

i.MX RT series support to interface with 8/16-bit SDRAM device and can run up to 166 MHz. Table 3 shows the test result of
transferring, by reading/writing 4096 bytes which measures the duration of SDRAM transferring by system tick.

Table 3. SDRAM performance

Items Performance (:MB/s) Comments

DCache enabled DCache disabled

SDRAM read 111 25 SDRAM Working @ 166 MHz

SDRAM write 323 322 SDRAM Working @ 166 MHz

Table 3 shows the good performance on SDRAM write access. The benefits are from the pipeline and SEMC IP high performance,
also cache improved more on reading performance.

To reproduce the test above, you can fetch the test code from the attached software package. The test steps are as follows.

• Unzip the performance test package and open semc.eww through C:\Users\nxa18895\Desktop\New folder\AN12437SW
\boards\evkbimxrt1050\demo_apps\performance_test\sdram_perforamnce_test\iar. Please first install IAR version
8.40 or later.

• Build the debug sub-project to generate the s-record file. The macro DCACHE_ENABLE is used to disable or enable
DCACHE. You can modify it based test requirements.

NXP Semiconductors
Memory performance test

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 3 / 17

• Generate the sb file with the following commands.

elftosb.exe -f imx -V -c imx-itcm-unsigned.bd -o ivt_flexspi_nor_normal.bin semc.srec

elftosb.exe -f kinetis -V -c program_flexspinor_image_hyperflash.bd -o boot_image.sb

ivt_flexspi_nor_normal_nopadding.bin

• Program the flash by MFGTools based on the IMXRT1050-EVKB board.

• The code is running on the internal ITCM. Do not directly run the code by debugging, which may affect performance.

After downloading the code to flash, you can run and see the test results in serial terminals.

The last test is for hyper flash. Configure the flash and enable it working at the target speed. For details, refer to
FlexSPI performance.

 NOTE

Figure 2. Sdram performance test

3.2 FlexSPI performance

The i.MX RT supports the FlexSPI interface. It provides flexible configurations to interface the QSPI flash, OCTAL flash, hyper
flash and hyper RAM. It supports AHB and IP command access. AHB access helps to achieve high performance, which is
described as follows.

The FlexSPI supports the eXecute-In-the-Place (XIP) on that connected NOR flash. BEE module attached to FlexSPI decrypts
images on the fly. The following enhanced features of FlexSPI help to improve the performance.

NXP Semiconductors
Memory performance test

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 4 / 17

• System cache(32 k DCACHE and 32 K ICACHE)

• AHB buffer, 8*64 bit TX AHB buffer and 128*64bit RX AHB buffer

Table 4 shows the performance evaluation, taking the hyper/QSPI flash as an example.

Table 4. Hyper flash performance

Items Performance (:MB/s) Comments

DCache enabled,
prefetch buffer
enabled

DCache disabled,
prefetch buffer
enabled

DCache disabled,
prefetch buffer
disabled

DCache enabled,
prefetch buffer
disabled

Hyper flash 296 70 15 92 Continuously
reading 4 KB bytes
@166 MHz DDR
mode

QSPI flash 58 58 8 35 Continuously
reading 4 KB bytes
@133 MHz SDR
mode

The hyper flash contains higher performance than QSPI flash. It benefits from the bus bandwidth, working speed and working
mode (DDR). The performance gets more improvement by enabling cache and prefetching buffer. The test results show that
prefetching buffer improve performances more even it gets the similar performance on QSPI flash when prefetch buffer is enabled
but no matter when the cache is enabled or disabled. The performance drops by about 77 % when the prefetch buffer and cache
is disabled.

The prefetch provides the significant effects to flexSPI performance. It specifies different buffer size for different master. That
means some master may have the dedicated prefetch buffer, which can optimize performance in some applications. For example,
it can assign specified buffer size to eDMA. If it needs frequent data transfers from external QSPI flash to internal SRAM by
eDMA, other master will not destroy prefetch buffer contents used for eDMA. Reduce the access latency if next access eDMA
requests exactly hit buffer. In this way, it improves performance more.

The FlexSPI provides register as follows to set buffer size for different master.

• AHBRXBUF0CR0

• AHBRXBUF0CR1

• AHBRXBUF0CR2

• AHBRXBUF0CR3

User can modify these registers and assign dedicated buffer sizes to service in certain master, and master ID definition, as
shown in Table 5.

Table 5. Master IDs

Module Master ID

Core platform 000b

eDMA 001b

DCP 010b

All others 011b

As seen in Table 5, the independent master ID is assigned to core, eDMA and DCP. Other masters share one ID, say PXP, USB
and so on.

Figure 3 shows the general prefetching scheme.

NXP Semiconductors
Memory performance test

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 5 / 17

When the prefetch buffer is enabled, once receiving the request from the bus, it first checks whether the request matched the
current AHB buffer address range. If yes, it directly returns the data. If not, it triggers to read new data to AHB buffer. After returning
the required data to bus, it continues to prefetch the following flash data to AHB buffer until the buffer is full.

Figure 3. FlexSPI prefetching flow

3.3 Performance comparison on different memory

To evaluate the performance of executing code in different memory, it takes the test to run the same code in different memory
and then calculates running time for comparison.

Taking one common audio encoding algorithm, OPUS, as an example, it encodes the same waveform file saved in SD card by
software algorithm, and calculates the duration of encoding waveform to OPUS format. Table 6 shows the test results.

Table 6. Performance comparison

Test application Code size (:Bytes) Code location Flash speed Avergae speed (:µS)

Opus (encoder) 188 238 Hyper flash 166 MHz DDR 828364

188 238 Hyper flash (encrypted
image)

166 MHz DDR 847894

188 238 QSPI flash 127 MHz SDR 1065541

188 238 SDRAM 163 MHz SDR 826454

188 238 ITCM 600 MHz 732964

Table 6 shows the performance comparison in different memory. It gets the best performance on running on ITCM, and the lowest
performance on QSPI flash. QSPI flash is slower than TCM by about 45%, and than Hyper flash or SDRAM by 28%. It also has
a slight drop on encrypted image, about 2.6%.

NXP Semiconductors
Memory performance test

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 6 / 17

The performance depends on the application case. In some applications, it drops more on running code in some memory (QSPI
flash), while the other application drops less. In some applications, it is possible to get the same performance. For example, in
Table 7, the CoreMark nearly gets the same score in different memories.

Table 7. CoreMark score

Memory Hyper flash QSPI flash SDRAM ITCM

CoreMark Score(:/
MHz)

5.059662 5.059659 5.059659 5.059659

Table 7 shows that the performance is determined by application and coding optimization. The coding optimization means to
optimize the code to get the high cache hit rate and place the key code to ITCM for performance improvement. For details, refer
to How to improve performance.

4 How to improve performance
The ways to improve the performance include:

• Keep high cache hit rate.

• Allocate the key code to internal RAM.

The facts impacting the cache hit rate include:

• Look-up table

• Branch

In most applications, the look-up table is used. When the look-up table is frequently accessed, it reads small size data, even one
byte each time. Each read access possibly leads to cache miss hit. A new flash read operation is triggered and the perforamnce
drops due to frequent triggering issues. The frequently branch also impacts the performance. it possibly leads to cache miss hit
in this case. For these applications, the best way to improve the performance is to allocate the code to internal SRAM (ITCM/
DTCM).

4.1 Allocating parts of code to specified memory

This section introduces how to allocate the codes to an internal RAM or other specified memory.

For how the SDK allocates the part of code to an internal SRAM, refer to the demo of power_mode_switch.

It defines the MACRO QUICKACCESS_SECTION_CODE in the lpm.h to allocate the function to a specified memory, as shown
in Figure 4.

NXP Semiconductors
How to improve performance

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 7 / 17

Figure 4. Macro definition for function allocation

Accordingly, it defines one section, RamFunction, in the linker file, evkmimxrt1060_power_mode_switch_ca.scf, as shown in
Figure 5.

Figure 5. Linker file definition for "RamFunction"

To allocate one function to a specified RAM, refer to the code in Figure 6.

NXP Semiconductors
How to improve performance

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 8 / 17

Figure 6. Examples of allocationg function to specified RAM

The fsl_common.h in sdk provides a similar MACRO definition for use.

5 How to identify key codes in one application
The internal RAM size is finite even RT has provided a big size for internals RAM (up to 2 M bytes in some part). It is still not
enough to place all codes to internal RAM in some applications, and it is hard to know which function is critical to impact
performance. A complex application may contain hundreds of functions, so the function analysis is difficult and more efforts are
required. The below introduces one simple way to get the function profiling by IDE tools (IAR and MDK).

5.1 Function profiling

Many IDE tools support to get function profiling by Serial Wire Output (SWO) or Embedded Trace Macrocell (ETM) trace. The
i.MX RT provides the full support by ETM and SWO TRACE. The below takes IAR and MDK as examples to show how to get
the function profiling.

5.1.1 Hardware settings

The i.MX RT evaluation board reserves the 20-way J-Link connector. SWO trace can be implemented by JLINK and the board
can be reworked by flying wire to connect ULink supported by ETM trace.

• SWO trace

SWO supports a single pin output signal from the core. The i.MX RT series support SWD and JTAG debug. Table 8 describes
J-link definition for JTAG and SWD.

Table 8. J-link connector definition

Pin number Pinout for JTAG Pinout for SWD Pin number Pinout for JTAG Pinout for SWD

1 Vtref Vtref 2 NC NC

3 nTRST NC 4 GND GND

5 TDI NC 6 GND GND

7 TMS SWDIO 8 GND GND

9 TCK SWCLK 10 GND GND

11 RTCK NC 12 GND GND

13 TDO SWO 14 GND GND

15 RESET RESET 16 GND GND

17 QBGRQ NC 18 GND GND

19 5 V - supply 5 V - supply 20 GND GND

NXP Semiconductors
How to identify key codes in one application

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 9 / 17

i.MX RT1050 and i.MX RT1020 remap the trace SWO signals to different pin, which is not multiplex with JTAG_TDO. The
board needs to be reworked by flying wire TRACE_SWO to pin13 of J-link connector. For i.MX RT1060, it multiplex
JTAG_TDO with TRACE_SWO to the pin connected to J-Link connector. SWO trace can work without any changes.

• ETM trace

ETM is a hardware microcell. When connected to a core, ETM outputs instructions and data trace information on a trace
port. The ETM provides core-driven trace through a trace port compliant to the ATB protocol.

The ULINK supports ETM trace and appropriate connectors, as shown in Figure 7.

Figure 7. Cortex-M ETM interface

To implement ETM, fly a wire to connect the MCU and Cortex-M connector with the following signals.

— TRACECLK

— TRACEDATA[0]

— TRACEDATA[1] (optional)

— TRACEDATA[2] (optional)

— TRACEDATA[3] (optional)

5.1.2 Software settings

To enable i.MX RT trace function, it is necessary to enable the TRACE clock and configure the appropriate pinmux.

• An example for configuring i.MX RT1060 to enable the SWO function:

— Trace clock configurations

CLOCK_EnableClock(kCLOCK_Trace)

CLOCK_SetDiv(kCLOCK_TraceDiv, 2)

CLOCK_SetMux(kCLOCK_TraceMux, 2)

NXP Semiconductors
How to identify key codes in one application

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 10 / 17

— PAD configurations

IOMUXC_SetPinMux(IOMUXC_GPIO_AD_B0_10_ARM_TRACE_SWO, 0U)

• An example for configuring the i.MX RT1060 to enable the ETM function:

— Trace clock configuration

CLOCK_EnableClock(kCLOCK_Trace);
CLOCK_SetDiv(kCLOCK_TraceDiv, 3);
CLOCK_SetMux(kCLOCK_TraceMux, 0);

— Pad configurations

IOMUXC_SetPinMux(IOMUXC_GPIO_B0_12_ARM_TRACE_CLK, 0U);
IOMUXC_SetPinMux(IOMUXC_GPIO_B0_04_ARM_TRACE0, 0U);
IOMUXC_SetPinMux(IOMUXC_GPIO_B0_05_ARM_TRACE1, 0U);
IOMUXC_SetPinMux(IOMUXC_GPIO_B0_06_ARM_TRACE2, 0U);
IOMUXC_SetPinMux(IOMUXC_GPIO_B0_07_ARM_TRACE3, 0U);

5.1.3 IDE settings

The below takes IAR as an example to introduce how to set tools for function profiling.

1. Connect the J-Link to the target board, MIMXRT1060-EVK, and click the J-Link to configure the SWO, as shown in Figure
8.

Figure 8. SWO configurations

2. Click Function Profiler to open the Function Profiler window. Figure 9 shows how to open the J-link window and Function
Profile window.

NXP Semiconductors
How to identify key codes in one application

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 11 / 17

Figure 9. Function Profile window

3. Right click Function and select source:Sampling, as shown in Figure 10.

Figure 10. Function Profile settings

Run codes for some time and stop to check the functon profiling, as shown in Figure 11.

NXP Semiconductors
How to identify key codes in one application

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 12 / 17

Figure 11. Function Profile result

As seen in Figure 11, App7 account for high loading rate in this application and then optimize this code to ITCM for
performance improvement.

After taking optimization of allocating App7 to ITCM, the performance improves by 18.5 %. Figure 12 shows the test result.

Figure 12. Test result of code optimization

The MDK IDE doesn't support the function profiling by SWO trace. The board needs to be reworked to support the ETM trace.
For details, refer to Hardware settings.

The below shows how to perform the ULINK Pro settings.

1. Connect the ULINK Pro to the target board, the reworked MIMXRT1060-EVK. Select the correct debugger and click
setting, as shown in Figure 13.

NXP Semiconductors
How to identify key codes in one application

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 13 / 17

Figure 13. Debugger settings in MDK

2. Click Trace to set the ETM, as shown in Figure 14.

NXP Semiconductors
How to identify key codes in one application

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 14 / 17

Figure 14. Trace settings in MDK

To select the Trace Port with 1-bit data or other options is determined by the hardware connection.

3. Figure 15 shows the Performance Analyze window.

Figure 15. Performance Analyzer window

4. Run codes and stop to watch the performance in the Performance analyzer window.

NXP Semiconductors
How to identify key codes in one application

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 15 / 17

6 Conclusion
This document introduces the system architecture and memory performance supported by i.MX RT10xx series, as well as how
to improve performance and get the function profiling by IDE tools. The document helps customer to optimize code and get good
performance when using the i.MX RT series.

7 Revision history
Table 9. Revision history

Revision number Date Substantive changes

0 05/2019 Initial release

1 02/2020 Update Memory performance test and SDRAM
performance

NXP Semiconductors
Conclusion

i.MX RT Series Performance Optimization, Rev. 1, Febuary 2020
Application Note 16 / 17

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: Febuary 2020
Document identifier: AN12437

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Overview
	3 Memory performance test
	3.1 SDRAM performance
	3.2 FlexSPI performance
	3.3 Performance comparison on different memory

	4 How to improve performance
	4.1 Allocating parts of code to specified memory

	5 How to identify key codes in one application
	5.1 Function profiling
	5.1.1 Hardware settings
	5.1.2 Software settings
	5.1.3 IDE settings

	6 Conclusion
	7 Revision history

